Skip to main content

Adapting Mass Algaculture for a Northern Climate

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

  • 2925 Accesses

Abstract

Most attention for algal biofuel-related schemes has been focused on ‘optimal’ locations, such as the southwestern USA. While these locations have clear advantages such as high yearly insolation and availability of unused land, we believe a case can also be made for adapting algal biofuels for a diversity of ‘suboptimal’ climates. The key, as in other regions, will be to link algaculture with industrial and municipal waste resources, including nutrients from wastewater and CO2 from point source industrial emissions. Productivities comparable to warmer climates may be obtained throughout the year by a combination of factors, including appropriate strain selection for low temperature and waste heat utilization, or by switching to a heterotrophic growth mode when light is insufficient for productive photosynthesis. In this manner, mass algaculture and associated R&D can be justified by offering valuable remediatory functions (i.e. tertiary wastewater treatment and CO2 abatement), rather than relying on optimistic estimations of oil and biomass productivity to spur development in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Aletsee L, Jahnke J (1992) Growth and productivity of the psychrophilic marine diatoms Thalassiosira antarctica Comber and Nitzschia frigida Grunow in batch cultures at temperatures below the freezing point of sea water. Polar Biol 11(8):643–647

    Article  Google Scholar 

  • Antizar-Ladislao B, Turrion-Gomez JL (2008) Second-generation biofuels and local bioenergy systems. Biofuels Bioprod Biorefin 2(5):455–469

    Article  CAS  Google Scholar 

  • Baliga R, Powers SE (2010) Sustainable algae biodiesel production in cold climates. Int J Chem Eng. doi:10.1155/2010/102179

  • Béchet Q, Shilton A, Fringer OB, Muñoz R, Guieysse B (2010) Mechanistic modeling of broth temperature in outdoor photobioreactors. Environ Sci Technol 44(6):2197–2203

    Article  Google Scholar 

  • Benemann JR (1979) Production of nitrogen fertilizer with nitrogen-fixing blue – green algae. Enzyme Microb Technol 1(2):83–90

    Article  CAS  Google Scholar 

  • Benemann JR (1997) CO2 mitigation with microalgae systems. Energy Convers Manage 38(Supplement 1):S475–S479

    Article  CAS  Google Scholar 

  • Benemann JR, Van Olst JC, Massingill MJ, Weissman JC, Brune DE (2002) The controlled eutrophication process: using microalgae for CO2 utilization and agricultural fertilizer recycling. In Greenhouse gas control technologies – 6th international conference, pp 1433–1438

    Google Scholar 

  • Bernstein L, Bosch P, Canziani O, Chen Z, Christ R, Davidson O, Hare W, Huq S, Karoly D, Kattsov V, others (2007) Climate change 2007: synthesis report. An assessment of the intergovernmental panel on climate change. IPCC. www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr_spm.pdf. Accessed 10 Aug 2010

  • Bock E, Schmidt I, Stüven R, Zart D (1995) Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor. Arch Microbiol 163(1):16–20

    Article  CAS  Google Scholar 

  • Bruton T, Lyons H, Lerat Y, Stanley M, Rasmussen MB (2009) A review of the potential of marine algae as a source of biofuel in Ireland. http://www.seambiotic.com/uploads/algae%20report%2004%202009.pdf. Accessed 24 July 2010

  • Chevalier P, Proulx D, Lessard P, Vincent WF, De La Noüe J (2000) Nitrogen and phosphorus removal by high latitude mat-forming cyanobacteria for potential use in tertiary wastewater treatment. J Appl Phycol 12(2):105–112

    Article  CAS  Google Scholar 

  • Chi Z, Pyle D, Wen Z, Frear C, Chen S (2007) A laboratory study of producing docosahexaenoic acid from biodiesel-waste glycerol by microalgal fermentation. Process Biochem 42(11):1537–1545

    Article  CAS  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das K (2010) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101(9):3097–3105

    Article  CAS  Google Scholar 

  • Chisti Y (2008a) Response to Reijnders: do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):351–352

    Article  CAS  Google Scholar 

  • Chisti Y (2008b) Biodiesel from microalgae beats bioethanol. Trends Biotechnol 26(3):126–131

    Article  CAS  Google Scholar 

  • Christie WW (2003) Lipid analysis, 3rd edn. The Oily Press, Bridgewater

    Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental life cycle comparison of algae to other bioenergy feedstocks. Environ Sci Technol 44(5):1813–1819

    Article  CAS  Google Scholar 

  • Collet P, Hélias A, Lardon L, Ras M, Goy R, Steyer J (2011) Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour Technol 102(1):207–214

    Article  CAS  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321(5891):926–929

    Article  CAS  Google Scholar 

  • Dortmundt D, Doshi K (1999) Recent developments in CO2 removal membrane technology. UOP LLC. www.uop.com/objects/84CO2RemvbyMembrn.pdf. Accessed 10 Aug 2010

  • Doucha J, Straka F, Lívanský K (2005) Utilization of flue gas for cultivation of microalgae (Chlorella sp.) in an outdoor open thin-layer photobioreactor. J Appl Phycol 17(5):403–412

    Article  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from 14 species of diatom (Bacillariophyceae). Phytochemistry 35(1):155–161

    Article  CAS  Google Scholar 

  • Ehimen EA (2010) Energy balance of microalgal-derived biodiesel. Energy Sources Part A Recovery Util Environ Eff 32(12):1111

    CAS  Google Scholar 

  • Ehimen EA, Connaughton S, Sun Z, Carrington GC (2009) Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenergy 1(6):371–381

    Article  CAS  Google Scholar 

  • Ehimen E, Sun Z, Carrington C (2010) Variables affecting the in situ transesterification of microalgae lipids. Fuel 89(3):677–684

    Article  CAS  Google Scholar 

  • Elliott DC, Neuenschwander GG, Hart TR, Butner RS, Zacher AH, Engelhard MH, Young JS, McCready DE (2004) Chemical processing in high-pressure aqueous environments. 7. Process development for catalytic gasification of wet biomass feedstocks. Ind Eng Chem Res 43(9):1999–2004

    Article  CAS  Google Scholar 

  • Falkowski PG, LaRoche J (1991) Acclimation to spectral irradiance in algae. J Phycol 27(1):8–14

    Article  Google Scholar 

  • Goldman JC, Carpenter EJ (1974) A kinetic approach to the effect of temperature on algal growth. Limnol Oceanogr 19(5):756–766

    Article  Google Scholar 

  • Goldman JC, Stanley HI (1974) Relative growth of different species of marine algae in wastewater-seawater mixtures. Mar Biol 28(1):17–25

    Article  CAS  Google Scholar 

  • Green F, Bernstone L, Lundquist T, Oswald W (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217

    Article  CAS  Google Scholar 

  • Griffiths EW (2009) Removal and utilization of wastewater nutrients for algae biomass and biofuels. Dissertation, Utah State University

    Google Scholar 

  • Grobbelaar JU, Soeder CJ (1985) Respiration losses in planktonic green algae cultivated in raceway ponds. J Plankton Res 7(4):497–506

    Article  Google Scholar 

  • Grönlund E, Klang A, Falk S, Hanæus J (2004) Sustainability of wastewater treatment with microalgae in cold climate, evaluated with energy and socio-ecological principles. Ecol Eng 22(3):155–174

    Article  Google Scholar 

  • Hamasaki A, Shioji N, Ikuta Y, Hukuda Y, Makita T, Hlrayama K, Matuzaki H, Tukamoto T, Sasaki S (1994) Carbon dioxide fixation by microalgal photosynthesis using actual flue gas from a power plant. Appl Biochem Biotechnol 45–46(1):799–809

    Article  Google Scholar 

  • Huang H, Mavinic DS, Lo KV, Koch FA (2006) Production and basic morphology of struvite crystals from a pilot-scale crystallization process. Environ Technol 27(3):233–245

    Article  CAS  Google Scholar 

  • Hunter P (2010) The tide turns towards microalgae. EMBO Rep 11(8):583–586

    Article  CAS  Google Scholar 

  • Jansson C, Northen T (2010) Calcifying cyanobacteria—the potential of biomineralization for carbon capture and storage. Curr Opin Biotechnol 21(3):365–371

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embiruçu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101(4):1406–1413

    Article  CAS  Google Scholar 

  • Kadam KL (1997) Power plant flue gas as a source of CO2 for microalgae cultivation: economic impact of different process options. Energy Convers Manage 38(Supplement 1):S505–S510

    Article  CAS  Google Scholar 

  • Kadam K (2001) Microalgae production from power plant flue gas: environmental implications on a life cycle basis. NREL technical report. http://www.fao.org/uploads/media/0106_NREL_-_Microalgae_production_from_power_plant_flue_gas.pdf. Accessed 14 Aug 2010

  • Kadam KL (2002) Environmental implications of power generation via coal-microalgae cofiring. Energy 27(10):905–922

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefineries. Appl Microbiol Biotechnol 64(2):137–145

    Article  CAS  Google Scholar 

  • Kumar A, Ergas S, Yuan X, Sahu A, Zhang Q, Dewulf J, Malcata FX, van Langenhove H (2010) Enhanced CO2 fixation and biofuel production via microalgae: recent developments and future directions. Trends Biotechnol 28(7):371–380

    Article  CAS  Google Scholar 

  • Lardon L, Hélias A, Sialve B, Steyer J, Bernard O (2009) Life-cycle assessment of biodiesel production from microalgae. Environ Sci Technol 43(17):6475–6481

    Article  CAS  Google Scholar 

  • Lee Y (2001) Microalgal mass culture systems and methods: their limitation and potential. J Appl Phycol 13(4):307–315

    Article  Google Scholar 

  • Lenton TM, Watson AJ (2000) Redfield revisited: 1. Regulation of nitrate, phosphate, and oxygen in the ocean. Global Biogeochem Cycles 14(1):225–248

    Article  CAS  Google Scholar 

  • Lundin M, Bengtsson M, Molander S (2000) Life cycle assessment of wastewater systems: influence of system boundaries and scale on calculated environmental loads. Environ Sci Technol 34(1):180–186

    Article  CAS  Google Scholar 

  • Mann G, Schlegel M, Schumann R, Sakalauskas A (2009) Biogas-conditioning with microalgae. Agron Res 7(1):33–38

    Google Scholar 

  • Maurer M, Schwegler P, Larsen T (2003) Nutrients in urine: energetic aspects of removal and recovery. Water Sci Technol 48(1):37–46

    CAS  Google Scholar 

  • McCarthy JJ (2001) Climate change 2001: impacts, adaptation, and vulnerability: contribution of working group ii to the third assessment report of the intergovernmental panel on climate change. Cambridge University Press. http://www.ipcc.ch/ipccreports/tar/wg2/index.htm. Accessed 25 July 2010

  • McNichol J, MacDougall KM, Melanson JE, McGinn PJ (2011) Suitability of Soxhlet extraction to quantify microalgal fatty acids as determined by comparison with in situ transesterification. Lipids. doi:10.1007/s11745-011-3624-3

  • Minowa T, Sawayama S (1999) A novel microalgal system for energy production with nitrogen cycling. Fuel 78(10):1213–1215

    Article  CAS  Google Scholar 

  • Moheimani NR, Borowitzka MA (2007) Limits to productivity of the alga Pleurochrysis carterae (Haptophyta) grown in outdoor raceway ponds. Biotechnol Bioeng 96(1):27–36

    Article  CAS  Google Scholar 

  • Negoro M, Hamasaki A, Ikuta Y, Makita T, Hirayama K, Suzuki S (1993) Carbon dioxide fixation by microalgae photosynthesis using actual flue gas discharged from a boiler. Appl Biochem Biotechnol 39–40(1):643–653

    Article  Google Scholar 

  • Oswald WJ (1973) Productivity of algae in sewage disposal. Sol Energy 15(1):107–117

    Article  CAS  Google Scholar 

  • Oswald WJ (2003) My sixty years in applied algology. J Appl Phycol 15(2):99–106

    Article  CAS  Google Scholar 

  • Pagand P, Blancheton J, Lemoalle J, Casellas C (2000) The use of high rate algal ponds for the treatment of marine effluent from a recirculating fish rearing system. Aquacult Res 31(10):729–736

    Article  Google Scholar 

  • Park KC, Whitney C, McNichol JC, Dickinson KE, MacQuarrie S, Skrupski BP, Zou JT, Wilson KE, O’Leary SJB, McGinn PJ (2011) Mixotrophic and photoautotrophic cultivation of 14 microalgae isolates from Saskatchewan, Canada: potential applications for wastewater remediation for biofuel production. J Appl Phycol. doi:10.1007/s10811-011-9772-2

  • Pereira I, Ortega R, Barrientos L, Moya M, Reyes G, Kramm V (2008) Development of a biofertilizer based on filamentous nitrogen-fixing cyanobacteria for rice crops in Chile. J Appl Phycol 21(1):135–144

    Article  Google Scholar 

  • Raven JA, Geider RJ (1988) Temperature and algal growth. New Phytol 110(4):441–461

    Article  CAS  Google Scholar 

  • Reijnders L (2008) Do biofuels from microalgae beat biofuels from terrestrial plants? Trends Biotechnol 26(7):349–350

    Article  CAS  Google Scholar 

  • Richmond A, Lichtenberg E, Stahl B, Vonshak A (1990) Quantitative assessment of the major limitations on productivity of Spirulina platensis in open raceways. J Appl Phycol 2(3):195–206

    Article  Google Scholar 

  • Rose GD (1999) Community-based technologies for domestic wastewater treatment and reuse: options for urban agriculture. International Development Research Centre. http://idl-bnc.idrc.ca/dspace/bitstream/10625/29827/2/117783.pdf. Accessed 24 July 2010

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. BioEnergy Res 1(1):20–43

    Article  Google Scholar 

  • Scholes CA, Kentish SE, Stevens GW (2008) Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents Chem Eng 1:52–66

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US DOE’s aquatic species program: biodiesel from algae. NREL technical report. http://idl-bnc.idrc.ca/dspace/bitstream/10625/29827/2/117783.pdf. Accessed 1 June 2010

  • Sialve B, Bernet N, Bernard O (2009) Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol Adv 27(4):409–416

    Article  CAS  Google Scholar 

  • Stucki S, Vogel F, Ludwig C, Haiduc AG, Brandenberger M (2009) Catalytic gasification of algae in supercritical water for biofuel production and carbon capture. Energy Environ Sci 2(5):535

    Article  CAS  Google Scholar 

  • Su Z, Kang R, Shi S, Cong W, Cai Z (2008) An economical device for carbon supplement in large-scale micro-algae production. Bioprocess Biosyst Eng 31(6):641–645

    Article  CAS  Google Scholar 

  • Subhadra BG (2010) Comment on “environmental life cycle comparison of algae to other bioenergy feedstocks”. Environ Sci Technol 44(9):3641–3642

    Article  CAS  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38(9):4897–4902

    Article  CAS  Google Scholar 

  • Suzuki Y, Takahashi M (1995) Growth responses of several diatom species isolated from various environments to temperature. J Phycol 31(6):880–888

    Article  Google Scholar 

  • Third K, Sliekers AO, Kuenen J, Jetten M (2001) The canon system (completely autotrophic ­nitrogen-removal over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria. Syst Appl Microbiol 24(4):588–596

    Article  CAS  Google Scholar 

  • van Beilen JB (2010) Why microalgal biofuels won’t save the internal combustion machine. Biofuels Bioprod Biorefin 4(1):41–52

    Article  Google Scholar 

  • Vonshak A, Torzillo G, Masojidek J, Boussiba S (2001) Sub-optimal morning temperature induces photoinhibition in dense outdoor cultures of the alga Monodus subterraneus (Eustigmatophyta). Plant Cell Environ 24(10):1113–1118

    Article  Google Scholar 

  • Walker DA (2009) Biofuels, facts, fantasy, and feasibility. J Appl Phycol 21(5):509–517

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ, Eppink MH (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuels Bioprod Biorefin 4(3):287–295

    Article  CAS  Google Scholar 

  • Wilde EW, Benemann JR, Weissman JC, Tillett DM (1991) Cultivation of algae and nutrient removal in a waste heat utilization process. J Appl Phycol 3(2):159–167

    Article  Google Scholar 

  • Williams DR, McCormick EH, Horenstein BK, Hake JM, Chakrabarti AR, Gray DM (2008) A new role for wastewater treatment facilities in the 21st century. Proc Water Environ Fed. doi:10.2175/193864708788807466

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102(1):159–165

    Article  CAS  Google Scholar 

  • Yen H, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse C. McNichol .

Editor information

Editors and Affiliations

Appendix

Appendix

CO2 sequestration calculation: Given productivity of 20 g/m2/day, maximum productivity per year  =  20 * 365  =  7.3 kg/m2/year. Approximately 1.8 t of CO2 are fixed for each ton of algae produced. 7.3 kg  *  1.8  =  13.14 kg CO2/m2/year.

Given 1,000,000 metric tons as average value for coal generating station (http://www.ec.gc.ca/pdb/ghg/onlinedata/dataSearch_e.cfm), divide 1,000,000 tons by 0.01314 tons CO2/m2/year  =  ∼76,000,000 m2  =  76 km2  =  7,600 ha.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

McNichol, J.C., McGinn, P.J. (2012). Adapting Mass Algaculture for a Northern Climate. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_7

Download citation

Publish with us

Policies and ethics