Skip to main content

Wastewater Treatment Pond Algal Production for Biofuel

  • Chapter
  • First Online:
The Science of Algal Fuels

Abstract

Wastewater treatment high rate algal ponds fertilised with CO2 (HRAP + C system) provide a niche opportunity for algal biofuel production in combination with energy-efficient and cost-effective tertiary-level wastewater treatment. Wastewaters are excellent media (water, nutrients, alkalinity buffering) for the growth of naturally occurring algae that could be harvested by bioflocculation and low-cost gravity settling, especially when fertilised with CO2 obtained from biogas produced and used for power generation at the treatment plant. The harvested algal biomass is converted to biofuels, preferably by processes that use the entire biomass with little or no dewatering. Anaerobic digestion of the algal biomass along with settled primary sludge is the most readily available and economic technology. The wastewater treatment function can essentially cover the entire capital and operation costs of biofuel production. Additional environmental and financial incentives are due to GHG abatement and nutrient fertiliser recovery. Since wastewater treatment systems using facultative ponds are already a widely used technology for secondary-level wastewater treatment, upgrading these ponds provides an opportunity to develop and refine algal production and harvest from HRAP systems and algal biofuel conversion technologies. The HRAP + C system can produce biogas for power generation at essentially no additional cost to that incurred for wastewater treatment alone. Additional research, in particular, on selection and cultivation of superior algal strains, grazer control and cost-effective algal harvest is still required before widespread adoption of this technology is possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Azov Y, Goldman JC (1982) Free ammonia inhibition of algal photosynthesis in intensive cultures. Appl Environ Microbiol 43:735–739

    CAS  Google Scholar 

  • Azov Y, Shelef G, Moraine R (1982) Carbon limitation of biomass production in high-rate oxidation ponds. Biotechnol Bioeng 24:579–594

    Article  CAS  Google Scholar 

  • Banat I, Puskas K, Esen I, Daher RA (1990) Wastewater treatment and algal productivity in an integrated ponding system. Biol Wastes 32:265–275

    Article  CAS  Google Scholar 

  • Benemann JR (2003) Biofixation of CO2 and greenhouse gas abatement with algae – technology roadmap. Report No. 7010000926. Prepared for the U.S. Department of Energy National Energy Technology Laboratory, Morgantown

    Google Scholar 

  • Benemann JR, Oswald WJ (1996) Systems and economic analysis of algae ponds for conversion of CO2 to biomass. Final report. US DOE-NETL No. DOE/PC/93204-T5. Prepared for the Energy Technology Center, Pittsburgh.

    Google Scholar 

  • Benemann JR, Tillett DM (1988) Lipid productivity and species competition in laboratory models of algae mass cultures. Prepared for the U.S. Department of Energy Solar Energy Research Institute, Golden, Colorada. Report No. 40413606

    Google Scholar 

  • Benemann JR, Koopman BL, Baker DC, Goebel RP, Oswald WJ (1978) Design of the algal pond subsystem of the photosynthetic energy factory. Final report for the US Energy Research and Development Administration Contract Number EX-76-(−01-2548). Report No. 78–4. SERL, Boulder

    Google Scholar 

  • Benemann JR, Koopman BL, Weissman JC, Eisenberg DM, Goebel P (1980) Development of algae harvesting and high rate pond technologies in California. In: Shelef G, Soeder CJ (eds) Algae biomass: production and use. Elsvier North Holland Press, Amsterdam, pp 457–496

    Google Scholar 

  • Borowitzka MA (1999) Commercial production of algae: ponds, tanks, tubes and fermenters. J Biotechnol 70:313–321

    Article  CAS  Google Scholar 

  • Borowitzka MA (2005) Culturing algae in outdoor ponds. In: Andersen IRA (ed) Algal culturing techniques. Elsevier/Academic Press, New York, pp 205–218

    Google Scholar 

  • Bouterfas R, Belkoura M, Dauta A (2002) Light and temperature effects on the growth rate of three freshwater algae isolated from a eutrophic lake. Hydrobiologia 489:207–217

    Article  Google Scholar 

  • Brennan L, Owende P (2010) Biofuels from algae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev 14:557–577

    Article  CAS  Google Scholar 

  • Cauchie HM, Hoffmann L, Jaspar-Versali MF, Salvia M, Thomé JP (1995) Daphnia magna Straus living in an aerated sewage lagoon as a source of chitin: ecological aspects. J Zool 125:67–78

    Google Scholar 

  • Chandler K, Liotta CL, Eckert CA, Schiraldi D (1998) Tuning alkylation reactions with temperature in near-critical water. AICHE J 44:2080–2087

    Article  CAS  Google Scholar 

  • Chelf P (1990) Environmental control of lipid and biomass production in two diatom species. J Appl Phycol 2:121–129

    Article  Google Scholar 

  • Chen P, Oswald WJ (1998) Thermochemical treatment for algal fermentation. Environ Int 24(8):889–897

    Article  CAS  Google Scholar 

  • Clarens AF, Resurreccion EP, White MA, Colosi LM (2010) Environmental Life Cycle Comparison of Algae to Other Bioenergy Feedstocks. Environ Sci Technol 44:1813–1819

    Article  CAS  Google Scholar 

  • Coleman LW, Rosen BH, Schwartzbach SD (1987) Biochemistry of neutral lipid synthesis in algae. In: Johnson DA (ed) FY 1986 aquatic species program annual report. Solar Energy Research Institute, Golden, SERI/SP-231-3071, 255

    Google Scholar 

  • Conde JL, Moro LE, Travieso L, Sanchez EP, Leiva A, Dupeiron R, Escobedo R (1993) Biogas purification using intensive algae cultures. Biotechnol Lett 15(3):317–320

    Article  CAS  Google Scholar 

  • Cooksey KE, Guckert JB, Williams SA, Collis PR (1987) Fluorometric determination of the neutral lipid content of algal cells using Nile Red. J Microbiol Methods 6:333–345

    Article  CAS  Google Scholar 

  • Craggs RJ (2005) Advanced integrated wastewater ponds. In: Shilton A (ed) Pond treatment technology. IWA scientific and technical report series. IWA, London, pp 282–310

    Google Scholar 

  • Craggs RJ, Green FB, Oswald WJ (1999) Economic and energy requirements of advanced integrated wastewater pond systems (AIWPS). In: Proceedings of the NZWWA annual conference, pp 1–7

    Google Scholar 

  • Craggs RJ, Davies-Colley RJ, Tanner CC, Sukias JPS (2003) Advanced ponds systems: performance with high rate ponds of different depths and areas. Water Sci Technol 48(2):259–267

    CAS  Google Scholar 

  • Davies-Colley RJ (2005) Pond disinfection. In: Shilton A (ed) Pond treatment technology. IWA scientific and technical report series. IWA, London, pp 100–136

    Google Scholar 

  • Davies-Colley RJ, Hickey CW, Quinn JM (1995) Organic matter, nutrients and optical characteristics of sewage lagoon effluents. N Z J Mar Freshw Res 29:235–250

    Article  CAS  Google Scholar 

  • Downing JB, Bracco E, Green FB, Ku AY, Lundquist TJ, Zubieta IX, Oswald WJ (2002) Low cost reclamation using the advanced integrated wastewater pond systems technology and reverse osmosis. Water Sci Technol 45(1):117–125

    CAS  Google Scholar 

  • Eisenberg DM, Koopman BL, Benemann JR, Oswald WJ (1981) Algal bioflocculation and energy conservation in algae sewage ponds. Bioeng Biotechnol 11:429–448

    Google Scholar 

  • Feinberg DA (1984) Technical and economic analysis of liquid fuel production from microalgae. Prepared for the Solar Energy Research Institute, Golden

    Google Scholar 

  • Garcia J, Mujeriego R, Hernandez-Marine M (2000) High rate algal pond operating strategies for urban wastewater nitrogen removal. J Appl Phycol 12:331–339

    Article  CAS  Google Scholar 

  • Golueke CG, Oswald WJ (1959) Biological conversion of light energy to the chemical energy of methane. Biol Convers Light Energy 7:219–227

    CAS  Google Scholar 

  • Green FB, Lundquist TJ, Oswald WJ (1995) Energetics of advanced integrated wastewater pond systems. Water Sci Technol 31(12):9–20

    Article  CAS  Google Scholar 

  • Green FB, Bernstone L, Lundquist TJ, Oswald WJ (1996) Advanced integrated wastewater pond systems for nitrogen removal. Water Sci Technol 33(7):207–217

    Article  CAS  Google Scholar 

  • Heubeck S, Craggs RJ, Shilton A (2007) Influence of CO2 scrubbing from biogas on the treatment performance of a high rate algal pond. Water Sci Technol 55(11):193–200

    Article  CAS  Google Scholar 

  • Jeon YC, Cho CW, Yun YS (2005) Measurement of algal photosynthetic activity depending on light intensity and quality. Biochem Eng J 27:127–131

    Article  CAS  Google Scholar 

  • Kagami M, de Bruin A, Ibelings B, Van Donk E (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kong Q-X, Li L, Martinez B, Chen P, Ruan R (2010) Culture of Algae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Appl Biochem Biotechnol 160:9–18

    Article  CAS  Google Scholar 

  • Konig A, Pearson HW, Silva SA (1987) Ammonia toxicity to algal growth in waste stabilisation ponds. Water Sci Technol 19(12):115–122

    CAS  Google Scholar 

  • Lavoie A, de la Noue J (1987) Harvesting of Scenedesmus obliquus in wastewaters: auto- or bioflocculation. Biotechnol Bioeng 30:852–859

    Article  CAS  Google Scholar 

  • Lundquist TJ (2008) Production of algae in conjunction with wastewater treatment. In: Proceedings of the 11th international conference on applied phycology, National University of Ireland, Galway, 22–27 June 2008

    Google Scholar 

  • Lundquist TJ, Woertz IC, Quinn NWT, Benemann JR (2010) A realistic technological and economic assessment of algae biofuels. Report prepared for the BP Energy Biosciences Institute, Berkeley, p 154

    Google Scholar 

  • Mandeno G, Craggs R, Tanner C, Sukias J, Webster-Brown J (2005) Potential biogas scrubbing using a high rate pond. Water Sci Technol 51(12):153–161

    Google Scholar 

  • Mata TM, Martins AA, Caetano NS (2010) Algae for biodiesel production and other applications: a review. Renew Sustain Energy Rev 14:217–232

    Article  CAS  Google Scholar 

  • Matsumura Y, Minowa T, Potic B, Kersten S, Prins W, van Swaaij W, van de Beld B, Elliott D, Neuenschwander G, Kruse A, Antal M (2005) Biomass gasification in near- and super-critical water: status and prospects. Biomass Bioenergy 29(4):269–292

    Article  CAS  Google Scholar 

  • Metcalf & Eddy, Inc. (1991) Wastewater engineering: treatment, disposal, and reuse, 3rd edn. McGraw-Hill Inc., New York

    Google Scholar 

  • Moraine R, Shelef G, Meydan A, Levi A (1979) Algal single cell protein from wastewater treatment and renovation process. Biotechnol Bioeng 21:1191–1207

    Article  CAS  Google Scholar 

  • New Zealand Ministry of Economic Development (2007) New Zealand energy greenhouse gas emissions 1990–2006. Report. Wellington, New Zealand

    Google Scholar 

  • Nurdogan Y, Oswald WJ (1995) Enhanced nutrient removal in high rate ponds. Water Sci Technol 31(12):33–43

    Article  CAS  Google Scholar 

  • O’Brien WJ, De Noyelles F (1972) Photosynthetically elevated pH as a factor in zooplankton mortality in nutrient enriched ponds. Ecology 53:605–624

    Article  Google Scholar 

  • Oswald WJ (1980) Algal production – problems, achievements and potential. In: Shelef G, Soeder CJ (eds) Algae biomass. Elsevier North/Holland/Biomedical Press, Amsterdam, pp 1–8

    Google Scholar 

  • Oswald WJ (1988a) Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 305–328

    Google Scholar 

  • Oswald WJ (1988b) Large-scale algal culture systems (engineering aspects). In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, Cambridge, pp 357–395

    Google Scholar 

  • Oswald WJ (1990) Advanced integrated wastewater pond systems. In: proceedings of the 1990 ASCE convention: supplying water and saving the environment for six billion people, Env. Eng. Div., New York

    Google Scholar 

  • Oswald WJ (1991) Introduction to advanced integrated wastewater ponding systems. Water Sci Technol 24(5):1–7

    CAS  Google Scholar 

  • Oswald WJ (1996) A syllabus on advanced integrated wastewater pond systems. A Syllabus on Advanced Integrated Pond Systems, University ofCalifornia, Berkeley, pp 323

    Google Scholar 

  • Oswald WJ, Golueke CG (1960) Biological transformation of solar energy. Adv Appl Microbiol 2:223–262

    Article  CAS  Google Scholar 

  • Oswald WJ, Gotaas HB, Golueke CG, Kellen WR (1957) Algae in waste treatment. Sewage Ind Waste 29(4):437–457

    Google Scholar 

  • Owen WF (1982) Energy in wastewater treatment. Prentice-Hall, Englewood Cliffs, pp 71–72

    Google Scholar 

  • Park JBK, Craggs RJ (2010) Wastewater treatment and algal production in high rate algal ponds with carbon dioxide addition. Water Sci Technol 61:633–639

    Article  CAS  Google Scholar 

  • Park JBK, Craggs RJ (2011) Nutrient removal in high rate algal ponds with carbon dioxide addition. Water Sci Technol 63(8):1758–1764

    Google Scholar 

  • Picot B, El Halouani H, Casellas C, Moersidik S, Bontoux J (1991) Nutrient removal by high rate pond system in a mediterranean climate (France). Water Sci Technol 23:1535–1541

    CAS  Google Scholar 

  • Schluter M, Groeneweg J (1981) Mass production of freshwater rotifers on liquid wastes: I. The influence of some environmental factors on population growth of Brachionus rubens. Aquaculture 25:17–24

    Article  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. department of energy’s aquatic species program – biodiesel from algae. National Renewable Energy Laboratory, Golden, 80401 NERL/TP-580-24190

    Google Scholar 

  • Shen Y, Yuan W, Pei ZJ, Wu Q, Mao E (2009) Algae mass production methods. Trans ASABE 52:1275–1287

    Google Scholar 

  • Short SM, Suttle CA (2002) sequence analysis of marine virus communities reveals that groups of related algal viruses are widely distributed in nature. Appl Environ Microbiol 63:1290–1296

    Article  Google Scholar 

  • Siegrist H, Hunziker W, Hofer H (2005) Anaerobic digestion of slaughterhouse waste with UF – membrane seperation and recycling of permeate after free ammonia stripping. Water Sci Technol 52(1–2):531–536

    CAS  Google Scholar 

  • Smith VH, Sturm BSM, de Noyelles FJ, Billings SA (2009) The ecology of algal biodiesel production. Trends Ecol Evol 25(5):301–309

    Article  Google Scholar 

  • Sukias JPS, Craggs RJ (2011) Digestion of wastewater pond algae and potential inhibition by alum and ammoniacal-N. Water Sci Technol 63(5):835–840

    Google Scholar 

  • Tampier M (2009) Algae technologies and processes for biofuels/bioenergy production in British Columbia: current technology, suitability and barriers to implementation. Prepared for The British Columbia Innovation Council, 14 Jan 2009

    Google Scholar 

  • Voltolina D, Gómez-Villa H, Correa G (2005) Nitrogen removal and recycling by Scenedesmus obliquus in semicontinuous cultures using artificial wastewater and a simulated light and temperature cycle. Bioresour Technol 96:359–362

    Article  CAS  Google Scholar 

  • Weissman JC, Goebel RP (1987) Factors affecting the photosynthetic yield of algae. In: Johnson DA (ed) FY 1986 aquatic species program annual report, Solar Energy Research Institute, Golden, SERI/SP-231-3071, pp 139–168

    Google Scholar 

  • Weissman JC, Goebel RP, Benemann JR (1988) Photobioreactor design: mixing carbon utilization and oxygen accumulation. Biotechnol Bioeng 31:336–344

    Article  CAS  Google Scholar 

  • Wells CD (2005) Tertiary treatment in integrated algal ponding systems. Master of science thesis, biotechnology, Rhodes University, South Africa

    Google Scholar 

  • West TO, Marland G (2001) A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States. Agric Ecosyst Environ 1812:1–16

    Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213

    Google Scholar 

  • Woertz IC (2007) Lipid productivity of alge grown on dairy wastewater as a possible feedstock for biodiesel. Master’s thesis, Faculty of Civil and Environmental Engineering, California Polytechnic University, San Luis Obispo

    Google Scholar 

  • Woertz I, Feffer A, Lundquist T, Nelson Y (2009) Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng 135(11):1115–1122

    Article  CAS  Google Scholar 

  • Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev 64:69–114

    Article  CAS  Google Scholar 

  • Wood S, Cowie A (2004) A review of greenhouse gas emission factors for fertiliser production. Prepared for the Research and Development Division, State Forests of New South Wales. Cooperative Research Centre for Greenhouse Accounting. For IEA Bioenergy Task 38

    Google Scholar 

  • Yen HW, Brune DE (2007) Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour Technol 98(1):130–134

    Article  CAS  Google Scholar 

  • Yesodharan S (2002) Supercritical water oxidation: an environmentally safe method for the disposal of organic wastes. Curr Sci 82(9):1112–1122

    CAS  Google Scholar 

Download references

 Acknowledgements

The authors wish to thank Jason Park, Stephan Heubeck and Ian Woertz who provided valuable contributions to this chapter. NIWA funding was provided by the New Zealand Foundation for Research Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert J. Craggs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Craggs, R.J., Lundquist, T., Benemann, J. (2012). Wastewater Treatment Pond Algal Production for Biofuel. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_23

Download citation

Publish with us

Policies and ethics