Skip to main content

Metabolic Pathways in Green Algae with Potential Value for Biofuel Production

Algal Fuel Metabolism

  • Chapter
  • First Online:
The Science of Algal Fuels

Abstract

This chapter examines the basic metabolic pathways in algae that might be developed to produce advanced biofuels in the next 20 years as viable alternatives to currently exploited ethanol pathways used in the production of first- and second-generation biofuels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Aarts MG, Keijzer CJ, Stiekema WJ, Pereira A (1995) Molecular characterization of the CER1 gene of arabidopsis involved in epicuticular wax biosynthesis and pollen fertility. Plant Cell 7:2115–2127

    CAS  Google Scholar 

  • Achitouv E, Metzger P, Rager MN, Largeau C (2004) C31–C34 methylated squalenes from a Bolivian strain of Botryococcus braunii. Phytochemistry 65:3159–3165

    Article  CAS  Google Scholar 

  • Arigoni D, Sagner S, Latzel C, Eisenreich W, Bacher A, Zenk MH (1997) Terpenoid biosynthesis from 1-deoxy-d-xylulose in higher plants by intramolecular skeletal rearrangement. Proc Natl Acad Sci USA 94:10600–10605

    Article  CAS  Google Scholar 

  • Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eukaryotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281:9909–9918

    Article  CAS  Google Scholar 

  • Buckingham JC (ed) (1998) Dictionary of natural products. Chapman & Hall, London, Version 6.1

    Google Scholar 

  • Catalanotti C, Dubini A, Subramanian V, Yang W, Magneschi L, Mus F, Seibert M, Posewitz M, Grossman AR (2012) Altered fermentative metabolism in Chlamydomonas reinhardtii mutants lacking pyruvate formate lyase and both pyruvate formate lyase and alcohol dehydrogenase. Plant Cell 24:1–16

    Article  Google Scholar 

  • Cheesbrough TM, Kolattukudy PE (1984) Alkane biosynthesis by decarbonylation of aldehydes catalyzed by a particulate preparation from Pisum sativum. Proc Natl Acad Sci USA 81:6613–6617

    Article  CAS  Google Scholar 

  • Chen M, Zhao L, Sun YL, Cui SX, Zhang LF, Yang B, Wang J, Kuang TY, Huang F (2010) Proteomic analysis of hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. J Proteome Res 9:3854–3866

    Article  CAS  Google Scholar 

  • Dahlqvist A, Stahl U, Lenman M, Banas A, Lee M, Sandager L, Ronne H, Stymne S (2000) Phospholipid:diacylglycerol acyltransferase: an enzyme that catalyzes the acyl-CoA-independent formation of triacylglycerol in yeast and plants. Proc Natl Acad Sci USA 97:6487–6492

    Article  CAS  Google Scholar 

  • Dennis MW, Kolattukudy PE (1991) Alkane biosynthesis by decarbonylation of aldehyde catalyzed by a microsomal preparation from Botryococcus braunii. Arch Biochem Biophys 287:268–275

    Article  CAS  Google Scholar 

  • Disch A, Schwender J, Muller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333:381–388

    CAS  Google Scholar 

  • Doebbe A, Keck M, La Russa M, Mussgnug JH, Hankamer B, Tekce E, Niehaus K, Kruse O (2010) The interplay of proton, electron, and metabolite supply for photosynthetic H2 production in Chlamydomonas reinhardtii. J Biol Chem 285:30247–30260

    Article  CAS  Google Scholar 

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284:7201–7213

    Article  CAS  Google Scholar 

  • Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431:1103–1107

    Article  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii: I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii: II. Role of plastoquinone. Plant Physiol 77:509–511

    Article  CAS  Google Scholar 

  • Ghirardi M, Kosourov S, Maness PC, Smolinski S, Seibert M (2010) Algal hydrogen production. In: Flickinger MC (ed) Wiley encyclopedia of biotechnology: bioprocess, bioseparation, and cell technology. Wiley, Hoboken, pp 184–189

    Google Scholar 

  • Gibbs M, Gfeller RP, Chen C (1986) Fermentative metabolism of Chlamydomonas reinhardtii: III. Photoassimilation of acetate. Plant Physiol 82:160–166

    Article  CAS  Google Scholar 

  • Grossman AR, Catalanotti C, Yang W, Dubini A, Magneschi L, Subramanian V, Posewitz MC, Seibert M (2011) Multiple facets of anoxic metabolism and hydrogen production in the unicellular green alga Chlamydomonas reinhardtii. New Phytol 190:279–288

    Article  CAS  Google Scholar 

  • Guckert JB, Cooksey KE (1990) Triacylglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high-pH induced cell cycle inhibition. J Phycol 26:72–79

    Article  CAS  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 53–64

    Google Scholar 

  • Hemschemeier A, Happe T (2005) The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem Soc Trans 33:39–41

    Article  CAS  Google Scholar 

  • Hemschemeier A, Jacobs J, Happe T (2008) Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7:518–526

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huang Z, Poulter CD (1989) Tetramethylsqualene, a triterpene from Botryococcus braunii var. showa. Phytochemistry 28:1467–1470

    Article  CAS  Google Scholar 

  • Hull A, Golubkov I, Kronberg B, Marandzheva T, van Stam J (2006) An alternative fuel for spark ignition engines. Int J Engine Res 7:203–214

    Article  CAS  Google Scholar 

  • Jaworski JG, Clough RC, Barnum SR (1989) A cerulenin insensitive short chain 3-Ketoacyl-Acyl carrier protein synthase in Spinacia oleracea leaves. Plant Physiol 90:41–44

    Article  CAS  Google Scholar 

  • Jorquera O, Kiperstok A, Sales EA, Embirucu M, Ghirardi ML (2010) Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors. Bioresour Technol 101:1406–1413

    Article  CAS  Google Scholar 

  • Kim D, Filtz MR, Proteau PJ (2004) The methylerythritol phosphate pathway contributes to carotenoid but not phytol biosynthesis in Euglena gracilis. J Nat Prod 67:1067–1069

    Article  CAS  Google Scholar 

  • Klein-Marcuschamer D, Ajikumar PK, Stephanopoulos G (2007) Engineering microbial cell factories for biosynthesis of isoprenoid molecules: beyond lycopene. Trends Biotechnol 25:417–424

    Article  CAS  Google Scholar 

  • Kosourov SN, Seibert M (2009) Hydrogen photoproduction by nutrient-deprived Chlamydomonas reinhardtii cells immobilized within thin alginate films under aerobic and anaerobic conditions. Biotechnol Bioeng 102:50–58

    Article  CAS  Google Scholar 

  • Kreuzberg K (1984) Starch fermentation via a formate producing pathway in Chlamydomonas reinhardtii, Chlorogonium elongatum and Chlorella fusca. Physiol Plant 61:87–94

    Article  CAS  Google Scholar 

  • Lange BM, Rujan T, Martin W, Croteau R (2000) Isoprenoid biosynthesis: the evolution of two ancient and distinct pathways across genomes. Proc Natl Acad Sci USA 97:13172–13177

    Article  CAS  Google Scholar 

  • Lichtenthaler HK (1999) The 1-Deoxy-d-Xylulose-5-Phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  Google Scholar 

  • Lichtenthaler HK, Schwender J, Disch A, Rohmer M (1997) Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway. FEBS Lett 400:271–274

    Article  CAS  Google Scholar 

  • Lindberg P, Park S, Melis A (2010) Engineering a platform for photosynthetic isoprene production in cyanobacteria, using Synechocystis as the model organism. Metab Eng 12:70–79

    Article  CAS  Google Scholar 

  • Liu J, Huang J, Sun Z, Zhong Y, Jiang Y, Chen F (2011) Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. Bioresour Technol 102:106–110

    Article  CAS  Google Scholar 

  • Magneschi L, Catalanotti C, Subramanian V, Dubini A, Yang W, Mus F, Posewitz MC, Seibert M, Perata P, Grossman AR (2012) A mutant in the ADH1 gene of Chlamydomonas reinhardtii elicits metabolic restructuring during anaerobiosis. Plant Physiol 158:1293–1305

    Article  CAS  Google Scholar 

  • Matthew T, Zhou W, Rupprecht J, Lim L, Thomas-Hall SR, Doebbe A, Kruse O, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulfur depletion. J Biol Chem 284:23415–23425

    Article  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–136

    Article  CAS  Google Scholar 

  • Merchant SS, Kropat J, Liu B, Shaw J, Warakanont J (2011) TAG, You’re it! Chlamydomonas as a reference organism for understanding algal triacylglycerol accumulation. Curr Opin Biotechnol 23:1–12

    Google Scholar 

  • Merzlyak MN, Chivkunova OB, Gorelova OA, Reshetnikova IV, Solovchenko AE, Khozin-Goldberg I, Cohen Z (2007) Effect of nitrogen starvation on optical properties, pigments, and arachidonic acid content of the unicellular green alga Parietochloris incisa (trebouxiophyceae, Chlorophyta). J Phycol 43:833–843

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E (1987) Lycopadiene, a tetraterpenoid hydrocarbon from new strains of the green alga Botryococcus braunii. Tetrahedron Lett 28:3931–3934

    Article  CAS  Google Scholar 

  • Metzger P, Largeau C (2005) Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl Microbiol Biotechnol 66:486–496

    Article  CAS  Google Scholar 

  • Metzger P, Berkaloff C, Coute A, Casadevall E (1985a) Alkadiene- and botryococcene-producing races of wild strains of Botryococcus braunii. Phytochemistry 24:2305–2312

    Article  CAS  Google Scholar 

  • Metzger P, Casadevall E, Pouet M-J, Pouet Y (1985b) Structures of some botryococcenes: branched hydrocarbons from the B race of the green alga Botryococcus braunii. Phytochemistry 24:2995–3002

    Article  CAS  Google Scholar 

  • Metzger P, Allard B, Casadevall E, Berkaloff C, Coute A (1990) Structure and chemistry of a new chemical race of Botryococcus braunii that produces lycopadiene, a tetraterpenoid hydrocarbon. J Phycol 26:258–266

    Article  CAS  Google Scholar 

  • Metzger P, Rager MN, Largeau C (2002) Botryolins A and B, two tetramethylsqualene triethers from the green microalga Botryococcus braunii. Phytochemistry 59:839–843

    Article  CAS  Google Scholar 

  • Metzger P, Rager MN, Sellier N, Largeau C (2003) Lycopanerols I-L, four new tetraterpenoid ethers from Botryococcus braunii. J Nat Prod 66:772–778

    Article  CAS  Google Scholar 

  • Meuser JE, Ananyev G, Wittig LE, Kosourov S, Ghirardi ML, Seibert M, Dismukes GC, Posewitz MC (2009) Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. J Biotechnol 142:21–30

    Article  CAS  Google Scholar 

  • Meuser JE, D’Adamo S, Jinkerson RE, Mus F, Yang W, Ghirardi ML, Seibert M, Grossman AR, Posewitz MC (2012) Genetic disruption of both Chlamydomonas reinhardtii [FeFe]-hydrogenases: Insight into the role of HYDA2 in H(2) production. Biochem Biophys Res Commun 417:704–709

    Article  CAS  Google Scholar 

  • Miura Y, Yagi K, Shoga M, Miyamoto K (1982) Hydrogen production by a green alga, Chlamydomonas reinhardtii, in an alternating light/dark cycle. Biotechnol Bioeng 24:1555–1563

    Article  CAS  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  Google Scholar 

  • Nguyen HM, Baudet M, Cuiné S, Adriano JM, Barthe D, Billon E, Bruley C, Beisson F, Peltier G, Ferro M, Li-Beisson Y (2011) Proteomic profiling of oil bodies isolated from the unicellular green microalga Chlamydomonas reinhardtii: with focus on proteins involved in lipid metabolism. Proteomics 11:4266–4273

    Article  CAS  Google Scholar 

  • Oh SH, Han JG, Kim Y, Ha JH, Kim SS, Jeong MH, Jeong HS, Kim NY, Cho JS, Yoon WB, Lee SY, Kang do H, Lee HY (2009) Lipid production in Porphyridium cruentum grown under different culture conditions. J Biosci Bioeng 108:429–434

    Article  CAS  Google Scholar 

  • Ohlrogge J, Browse J (1995) Lipid biosynthesis. Plant Cell 7:957–970

    CAS  Google Scholar 

  • Ohta S, Miyamoto K, Miura Y (1987) Hydrogen evolution as a consumption mode of reducing equivalents in green algal fermentation. Plant Physiol 83:1022–1026

    Article  CAS  Google Scholar 

  • Ota M, Kato Y, Watanabe M, Sato Y, Smith RL Jr, Rosello-Sastre R, Posten C, Inomata H (2011) Effects of nitrate and oxygen on photoautotrophic lipid production from Chlorococcum littorale. Bioresour Technol 102:3286–3292

    Article  CAS  Google Scholar 

  • Philipps G, Krawietz D, Hemschemeier A, Happe T (2011) A Pyruvate Formate Lyase (PFL1) deficient Chlamydomonas reinhardtii strain provides evidence for a link between fermentation and hydrogen evolution in green algae. Plant J 66(2):330–340

    Article  CAS  Google Scholar 

  • Pienkos PT, Darzins A (2009) The promise and challenges of microalgal-derived biofuels. Biofuels Bioprod Biorefining 3:431–440

    Article  CAS  Google Scholar 

  • Pohl P (1979) Dichotic listening in a child recovering from acquired aphasia. Brain Lang 8:372–379

    Article  CAS  Google Scholar 

  • Quinn JC, Turner CW, Bradley TH (2012) Scale-up of flat plate photobioreactors considering diffuse and direct light characteristics. Biotechnol Bioeng 109:363–370

    Article  CAS  Google Scholar 

  • Rabbani S, Beyer P, Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  CAS  Google Scholar 

  • Radakowits R, Eduafo PM, Posewitz MC (2010) Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. Metab Eng 13:89–95

    Article  Google Scholar 

  • Rager MN, Metzger P (2000) Six novel tetraterpenoid ethers, lycopanerols B-G, and some other constituents from the green microalga Botryococcus braunii. Phytochemistry 54:427–437

    Article  CAS  Google Scholar 

  • Roessler PG (1988) Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency. Arch Biochem Biophys 267:521–528

    Article  CAS  Google Scholar 

  • Saint-Amans S, Girbal L, Andrade J, Ahrens K, Soucaille P (2001) Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J Bacteriol 183:1748–1754

    Article  CAS  Google Scholar 

  • Sato Y, Ito Y, Okada S, Murakami K, Abe H (2003) Biosynthesis of the triterpenoids, botryococcenes and tetramethylsqualene in the B race of Botryococcus braunii via the non-mevalonate pathway. Tetrahedron Lett 44:7035–7037

    Article  CAS  Google Scholar 

  • Schirmer A, Rude MA, Li X, Popova E, del Cardayre SB (2010) Microbial biosynthesis of alkanes. Science 329:559–562

    Article  CAS  Google Scholar 

  • Schwender J, Zeidler J, Groner R, Muller C, Focke M, Braun S, Lichtenthaler FW, Lichtenthaler HK (1997) Incorporation of 1-deoxy-d-xylulose into isoprene and phytol by higher plants and algae. FEBS Lett 414:129–134

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the US Department of Energy’s Aquatic Species Program – biodiesel from algae. National Renewable Energy Laboratory, Golden, 328

    Book  Google Scholar 

  • Siaut M, Cuine S, Cagnon C, Fessler B, Nguyen M, Carrier P, Beyly A, Beisson F, Triantaphylides C, Li-Beisson Y, Peltier G (2011) Oil accumulation in the model green alga Chlamydomonas reinhardtii: characterization, variability between common laboratory strains and relationship with starch reserves. BMC Biotechnol 11:7

    Article  CAS  Google Scholar 

  • Stephenson AL, Kazamia E, Dennis JS, Howe CJ, Scott SA, Smith AG (2010) Life-cycle assessment of potential algal biodiesel production in the United Kingdom: a comparison of raceways and air-lift tubular bioreactors. Energy Fuels 24:4062–4077

    Article  CAS  Google Scholar 

  • Suen Y, Hubbard JS, Holzer G, Tornabene TG (1987) Total lipid production of the green alga Nannochloropsis sp. QII under different nitrogen regimes. J Phycol 23:289–296

    Article  CAS  Google Scholar 

  • Terashima M, Specht M, Naumann B, Hippler M (2010) Characterizing the anaerobic response of Chlamydomonas reinhardtii by quantitative proteomics. Mol Cell Proteomics 9:1514–1532

    Article  CAS  Google Scholar 

  • Tornabene TG, Holzer G, Lien S, Burris N (1983) Lipid composition of the nitrogen starved green alga Neochloris oleoabundans. Enzyme Microb Technol 5:435–440

    Article  CAS  Google Scholar 

  • Wada H, Murata N (1998) Membrane lipids in cyanobacteria. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic Publishers, Dordrecht, pp 65–81

    Google Scholar 

  • Wake LV, Hillen LW (1980) Study of a “bloom” of the oil-rich alga Botryococcus braunii in the Darwin river reservoir. Biotechnol Bioeng 22:1637–1656

    Article  Google Scholar 

  • Wang ZT, Ullrich N, Joo S, Waffenschmidt S, Goodenough U (2009) Algal lipid bodies: stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii. Eukaryot Cell 8:1856–1868

    Article  CAS  Google Scholar 

  • Wang H, Alvarez S, Hicks LM (2012) Comprehensive comparison of iTRAQ and label-free LC-based quantitative proteomics approaches using two Chlamydomonas reinhardtii strains of interest for biofuels engineering. J Proteome Res 11:487–501

    Article  CAS  Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213

    Article  Google Scholar 

  • Withers ST, Keasling JD (2007) Biosynthesis and engineering of isoprenoid small molecules. Appl Microbiol Biotechnol 73:980–990

    Article  CAS  Google Scholar 

  • Work VH, Radakovits R, Jinkerson RE, Meuser JE, Elliott LG, Vinyard DJ, Laurens LM, Dismukes GC, Posewitz MC (2010) Increased lipid accumulation in the Chlamydomonas reinhardtii sta7-10 starchless isoamylase mutant and increased carbohydrate synthesis in complemented strains. Eukaryot Cell 9:1251–1261

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  Google Scholar 

Download references

 Acknowledgments

The authors would like to thank colleagues in the Photobiology Group at NREL for a stimulating research environment, which led to our opportunity to write this chapter. This work was supported by the Computational Biology Program, Office of Biological and Environmental Research, US Department of Energy (MS), and by the NREL LDRD program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkataramanan Subramanian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Subramanian, V., Dubini, A., Seibert, M. (2012). Metabolic Pathways in Green Algae with Potential Value for Biofuel Production. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_22

Download citation

Publish with us

Policies and ethics