Skip to main content

Photobiology and Lipid Metabolism in Algae

  • Chapter
  • First Online:
Book cover The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Light has several effects on the physiology, morphology, and cellular composition of algae. Here, we review the photobiology of microalgae and the effects of light on lipid metabolism. Algae have generally a very flexible metabolism and large differences in photobiology depending on the species and the physiological state of the photosynthetic organism.

Using the linear Z-scheme of photosynthesis, acetyl CoA production through glycolysis, and the fatty acid cycle in the plastids, we calculated the theoretical minimum photon cost of lipid synthesis. The photon cost of synthesizing a palmitic acid chain (16:0) is 187 photons, which is energetic conversion efficiency of ∼30 % when using red photons only. This calculation does not, however, take into account any loss processes or production of other compounds required for cell growth. Taking the apparent loss processes into account reduces the highest conversion efficiency from light to lipids to ∼9 %.

Light effect on lipid metabolism can be divided into photon flux density effects and effects of light-dark cycling. The effect of light on lipid composition is highly species specific. Additionally, the physiological state of the algae is determining the amount and what type of lipids are abundant. During exponential growth, organic carbon is used for growth, and normally algae only start to accumulate storage products such as lipids during stress situations (e.g., lack of nitrogen) that limit vegetative growth. Lipids associated with the photosynthetic membranes will increase at low light due to photoacclimation. During stationary growth phase, higher photon flux will in many cases increase the proportion of saturated fat, and increasing light period may have the same effect. For those species that use lipids as the main storage product, this is likely related to increased production of saturated fatty acids stored as triacylglycerols (TAGs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Arts MT, Rai H (1997) Effects of enhanced ultraviolet-B radiation on the production of lipid, polysaccharide and protein in three freshwater algal species. Freshw Biol 38:597–610

    Article  CAS  Google Scholar 

  • Babin M, Morel A, Claustre H, Bricaud A, Kolber Z, Falkowski PG (1996) Nitrogen- and irradiance-dependent variations of the maximum quantum yield of carbon fixation in eutrophic, mesotrophic and oligotrophic marine systems. Deep Sea Res 43:1241–1272

    Article  CAS  Google Scholar 

  • Bell-Pedersen D, Cassone VM, Earnest DJ, Golden SS, Hardin PE, Thomas TL, Zoran MJ (2005) Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat Rev Genet 6:544–556

    Article  CAS  Google Scholar 

  • Brown MR, Dunstan GA, Norwood SJ, Miller KA (1996) Effects of harvest stage and light on the biochemical composition of the diatom Thalassiosira pseudonana. J Phycol 32:64–73

    Article  CAS  Google Scholar 

  • Buchanan BB, Gruissem W, Jones RL (2000) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville

    Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Clegg RM (2006) Nuts and bolts of excitation energy migration and energy transfer. In: Papageorgiou GC, Govindjee (eds) Chlorophyll a fluorescence. A signature of photosynthesis, vol 19, Advances in photosynthesis respiration., pp 83–105

    Google Scholar 

  • Degen J, Ubele A, Retze A, Schmidt-Staigar U, Trosch W (2001) A novel airlift photobioreactor with baffles for improved light utilization through the flashing light effect. J Biotechnol 92:89–94

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW III (2006) Photoprotection in an ecological context: the remarkable complexity of thermal energy dissipation. New Phytol 172:11–21

    Article  CAS  Google Scholar 

  • DuRand MD, Green RE, Sosik HM, Olson RJ (2002) Diel variation in optical properties of Micromonas pusilla (Prasinophyceae). J Phycol 38:1132–1142

    Article  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis, 2nd edn. Princeton University Press, Princeton

    Google Scholar 

  • Foy RH, Gibson CE, Smith RV (1976) The influence of daylength, light intensity and temperature on the growth rates of planktonic blue-green algae. Br Phycol J 11:151–163

    Article  Google Scholar 

  • Gardner MJ, Hubbard KE, Hotta CT, Dodd AN, Webb AAR (2006) How plants tell the time. Biochem J 397:15–24

    Article  CAS  Google Scholar 

  • Goes JI, Handa N, Taguchi S, Hama T (1994) Effect of UV-B radiation on the fatty acid composition of the marine phytoplankter Tetraselmis sp.: relationship to cellular pigments. Mar Ecol Prog Ser 114:259–274

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2009) Algal lipids and effect of the environment on their biochemistry. In: Kainz M, Brett MT, Arts MT (eds) Lipids in aquatic ecosystems. Springer, New York, pp 1–24

    Chapter  Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  Google Scholar 

  • Hobson LA, Hartley A, Ketcham DE (1979) Effects of variations in daylength and temperature on net rates of photosynthesis, dark respiration and excretion by Isochrysis galbana Parke. Plant Physiol 63:947–951

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huntley ME, Redalje DG (2007) CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitig Adapt Strat Glob Chang 12:573–608

    Article  Google Scholar 

  • Jacquet S, Partensky F, Lennon J-F, Vaulot D (2001) Diel patterns in growth and division in marine picoplankton in culture. J Phycol 37:357–369

    Article  Google Scholar 

  • Katsuda T, Lababpour A, Shimahara K, Katoh S (2004) Astaxanthin production by Haematococcus pluvialis under illumination with LEDs. Enzyme Microb Technol 35:81–86

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2004) Effect of solar irradiance on lipids of the green alga Ulva fenestrata Postels et Ruprecht. Bot Mar 47:395–401

    Article  CAS  Google Scholar 

  • Khotimchenko SV, Yakovleva IM (2005) Lipid composition of the red alga Tichocarpus crinitus exposed to different levels of photon irradiance. Phytochemistry 66:73–79

    Article  CAS  Google Scholar 

  • Kiang NY, Siefert J, Govindjee, Blankenship RE (2007) Spectral signatures of photosynthesis. I. Review of earth organisms. Astrobiology 7:222–251

    Article  CAS  Google Scholar 

  • Kirk JTO (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • le B Williams PJ, Laurens LML (2010) Microalgae as biodiesel & biomass feedstocks: review & analysis of the biochemistry, energetics & economics. Energy Environ Sci 3:554–590

    Article  CAS  Google Scholar 

  • Li Q, Du W, Liu DH (2008) Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol 80:749–756

    Article  CAS  Google Scholar 

  • Melis A (2009) Solar energy conversion efficiencies in photosynthesis: minimizing the chlorophyll antennae to maximize efficiency. Plant Sci 177:272–280

    Article  CAS  Google Scholar 

  • Mock T, Gradinger R (2000) Changes in photosynthetic carbon allocation in algal assemblages of Arctic sea ice with decreasing nutrient concentrations and irradiance. Mar Ecol Prog Ser 202:1–11

    Article  CAS  Google Scholar 

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions – II: the significance of lipids under light limited growth in Antarctic sea ice diatoms. Phytochemistry 61:53–60

    Article  CAS  Google Scholar 

  • Molina Grima E, Acien Fernandez FG, Garcıa Camacho F, Chisti Y (1999) Photobioreactors: light regime, mass transfer, and scaleup. J Biotechnol 70:231–247

    Article  CAS  Google Scholar 

  • Monnier A, Liverani S, Bouvet R, Jesson B, Smith JQ, Mosser J, Corellou F, Bouget FY (2010) Orchestrated transcription of biological processes in the marine picoeukaryote Ostreococcus exposed to light/dark cycles. BMC Genomics 11:1–13

    Article  Google Scholar 

  • Nelson DM, Brand LE (1979) Cell division periodicity in 13 species of marine phytoplankton on a light: dark cycle. J Phycol 15:67–75

    Article  Google Scholar 

  • Norsker N-H, Barbosa MJ, Vermuë MH, Wijffels RH (2011) Microalgal production – a close look at the economics. Biotechnol Adv 29:24–27

    Article  CAS  Google Scholar 

  • Papina M, Meziane T, van Woesik R (2007) Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Comp Biochem Physiol B Biochem Mol Biol 147:583–589

    Article  CAS  Google Scholar 

  • Phillips JN Jr, Myers J (1954) Growth rate of Chlorella in flashing light. Plant Physiol 29:152–161

    Article  CAS  Google Scholar 

  • Prézelin BB (1992) Diel periodicity in phytoplankton productivity. Hydrobiologia 238:1–35

    Article  Google Scholar 

  • Ragni M, D’Alcala MR (2007) Circadian variability in the photobiology of Phaeodactylum tricornutum: pigment content. J Plankton Res 29:141–156

    Article  CAS  Google Scholar 

  • Rai H (1995) The influence of photon flux density (PFD) on short term 14C incorporation into proteins, carbohydrates and lipids in freshwater algae. Hydrobiologia 308:51–59

    Article  CAS  Google Scholar 

  • Rawsthorne S (2002) Carbon flux and fatty acid synthesis in plants. Prog Lipid Res 41:182–196

    Article  CAS  Google Scholar 

  • Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rubio FC, Camacho FG, Sevilla JMF, Chisti Y, Grima EM (2003) A mechanistic model of photo­synthesis in microalgae. Biotechnol Bioeng 81:459–473

    Article  Google Scholar 

  • Schwender J, Goffman F, Ohlrogge JB, Shachar-Hill Y (2004) Rubisco without the Calvin cycle improves the carbon efficiency of developing green seeds. Nature 432:779–782

    Article  CAS  Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s aquatic species program – biodiesel from algae. National Renewable Energy Laboratory. Report NREL/TP-580-24190

    Google Scholar 

  • Sicko-Goad L, Andresen NA (1991) Effect of growth and light/dark cycles on diatom lipid content and composition. J Phycol 27:710–718

    Article  CAS  Google Scholar 

  • Smith REH, Furgal JA, Lean DRS (1998) The short-term effects of solar ultraviolet radiation on phytoplankton photosynthesis and photosynthate allocation under contrasting mixing regimes in Lake Ontario. J Gt Lakes Res 24:427–441

    Article  CAS  Google Scholar 

  • Smith VH, Sturm BSM, deNoyelles FJ, Billings SA (2010) The ecology of algal biodiesel production. Trends Ecol Evol 25:301–309

    Article  Google Scholar 

  • Stramski D, Reynolds RA (1993) Diel variations in the optical properties of a marine diatom. Limnol Oceanogr 38:1347–1364

    Article  Google Scholar 

  • Syrett PJ (1982) Nitrogen metabolism of microalgae. Can Bull Fish Aquat Sci 210:182–210

    Google Scholar 

  • Terry KL (1986) Photosynthesis in modulated light: quantitative dependence of photosynthetic enhancement on flashing rate. Biotechnol Bioeng 28:988–995

    Article  CAS  Google Scholar 

  • Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol 26:278–288

    Article  CAS  Google Scholar 

  • Walsh K, Jones GJ, Dunstan RH (1997) Effect of irradiance on fatty acid, carotenoid, total protein composition and growth of Microcystis aeruginosa. Phytochemistry 44:817–824

    Article  CAS  Google Scholar 

  • Weyer KM, Bush DR, Darzins A, Willson BD (2010) Theoretical maximum algal oil production. Bioenerg Res 3:204–213

    Article  Google Scholar 

  • Wijffels RH, Barbosa MJ (2010) An outlook on microalgal biofuels. Science 239:796–799

    Article  Google Scholar 

  • Yoshimoto N, Sato T, Kondo Y (2005) Dynamic discrete model of flashing light effect in photosynthesis of microalgae. J Appl Phycol 17:207–214

    Article  CAS  Google Scholar 

  • Zemke PE, Wood BD, Dye DJ (2010) Consideration for the maximum production rates of triacylglycerol from microalgae. Biomass Bioenergy 34:145–151

    Article  CAS  Google Scholar 

  • Zhukova NV, Titlyanov EA (2006) Effect of light intensity on the fatty acid composition of dinoflagellates symbiotic with hermatypic corals. Bot Mar 49:339–346

    Article  CAS  Google Scholar 

  • Zijffers J-WF, Janssen M, Tramper J, Wijffels RH (2008) Design process of an area-efficient photobioreactor. Mar Biotechnol 10:404–415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristian Spilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Spilling, K., Seppälä, J. (2012). Photobiology and Lipid Metabolism in Algae. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_21

Download citation

Publish with us

Policies and ethics