Skip to main content

Algal Biorefinery: Sustainable Production of Biofuels and Aquaculture Feed?

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

With increased human consumption, fossil fuels and global fish stocks are rapidly depleting which has caused significant environmental and ecological damage. Current bioenergy crops compete with arable land or biodiverse landscapes, and current aquaculture is heavily dependent on wild fish for aquaculture feed. Microalgae are miniature biochemical factories and, in terms of global ecological footprint, could make a greater contribution than terrestrial plants in fixing CO2 and converting solar energy into chemical energy and nutrients. With recent research progress in algal cultivation and biotechnology, microalgae have great potential as sustainable feedstock for the production of biofuels and aquaculture feed with a number of environmental benefits. This book chapter will review the advances in the use of microalgae as part of a multiple product biorefinery for generation of renewable biofuels and aquaculture feed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

 References

  • Andersen RA (1996) Algae. In: Hunter-Cevera JC, Belt A (eds) Maintaining cultures for biotechnology and industry. Academic Press, California, pp 29–64

    Chapter  Google Scholar 

  • Amar EC, Kiron V, Okamoto N, Satoh S, Watanabe T (2000) Effects of b-carotene on the immune response of rainbow trout, Oncorhynchus mykiss. Fish Sci 66:1068–1075

    Article  CAS  Google Scholar 

  • Amar EC, Kiron V, Satoh S, Watanabe T (2001) Influence of various dietary synthetic carotenoids on bio-defense mechanisms in rainbow trout, Oncorhynchus mykiss. Aquacult Res 32:162–173

    Article  CAS  Google Scholar 

  • Amar EC, Kiron V, Satoh S, Wantanabe T (2004) Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish Shellfish Immunol 16:527–537

    Article  CAS  Google Scholar 

  • Baker RTM (2002) Canthaxanthin in aquafeed applications: is there any risk? Trends Food Sci Tech 12:240–243

    Article  Google Scholar 

  • Balat M (2009a) New biofuel production technologies. Energy Educ Sci Technol Part A 22:147–161

    CAS  Google Scholar 

  • Balat M (2009b) Possible methods for hydrogen production. Energy Sources Part A 31:39–50

    Article  CAS  Google Scholar 

  • Bell JG, Sargent JR (2003) Arachidonic acid in aquaculture feeds: current status and future opportunities. Aquaculture 218:491–499

    Article  CAS  Google Scholar 

  • Boeckaert C, Vlaeminck B, Dijkstra J, Issa-Zacharia A, Van Nespen T, Van Straalen W (2008) Effect of dietary starch or microalgae supplementation on rumen fermentation and milk fatty acid composition of dairy cows. J Dairy Sci 91:4714–4727

    Article  CAS  Google Scholar 

  • Burford MA, Thompson PJ, McIntosh RP, Bauman RH, Pearson DC (2004) The contribution of flocculated material to shrimp (Litopenaeus vannamei) in a high-intensity, zero-exchange system. Aquaculture 232:525–537

    Article  Google Scholar 

  • Bush RA, Hall KM (2006) Process for the production of ethanol from algae. US Patent 7135: 308

    Google Scholar 

  • Castell JD, Bell JG, Tocher DR, Sargent JR (1994) Effects of purified diets containing different combinations of arachidonic and docosahexaenoic acid on survival, growth and fatty-acid composition of juvenile turbot (Scophthalmus maximus). Aquaculture 128:315–333

    Article  CAS  Google Scholar 

  • Chakraborty RD, Chakraborty K, Radhakrishnan EV (2007) Variation in fatty acids composition of Artemia salina nauplii enriched with microalgae and baker’s yeast for use in larviculture. J Agric Food Chem 55:4043–4051

    Article  CAS  Google Scholar 

  • Chen P, Min M, Chen Y, Wang L, Li Y, Chen Q, Wang C, Wan Y, Wang X, Cheng Y, Deng S, Hennessy K, Lin X, Liu Y, Wang Y, Martinez B, Ruan R (2009) Review of the biological and engineering aspects of algae to fuels approach. Int J Agric Biol Eng 2:1–30

    Google Scholar 

  • Cheng JJ, Timilsina GR (2011) Status and barriers of advanced biofuel technologies: a review. Renew Ener 36:3541–3549

    Article  CAS  Google Scholar 

  • Cheng-Wu Z, Zmora O, Kopel R, Richmond A (2001) An industrial-size flat plate glass reactor for mass production of Nannochloropsis sp. (Eustigmatophyceae). Aquaculture 195:35–49

    Article  CAS  Google Scholar 

  • Cheryl (2010) Algae becoming the new biofuel of choice. http://duelingfuels.com/biofuels/non-food-biofuels/algae-biofuel.php#more-115N. Accessed 20 Dec 2011

  • Chiang IZ, Huang WY, Wu JT (2004) Allelochemicals of Botryococcus braunii (Chlorophyceae). J Phycol 40: 474–480

    Google Scholar 

  • Chini Zittelli G, Lavista F, Bastianini A, Rodolfi L, Vincenzini M, Tredici MR (1999) Production of eicosapentaenoic acid by Nannochloropsis sp. cultures in outdoor tubular photobioreactors. J Biotechnol 70:299–312

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Cuzon G, Lawrence A, Gaxiola G, Rosas C, Guillaume J (2004) Nutrition of Litopenaeus vannamei reared in tanks or in ponds. Aquaculture 235:513–551

    Article  CAS  Google Scholar 

  • Dagar A, Zilberg D, Cohen Z, Boussiba S, Khozin-Goldberg I (2010) Short-term dietary supplementation with the microalga Parietochloris incisa enhances stress resistance in guppies Poecilia reticulata. Aquacult Res 41:267–277

    Article  CAS  Google Scholar 

  • Dang VT, Yan L, Speck P, Benkendorff K (2011) Effects of micro and macroalgal diet supplementations on growth and immunity of greenlip abalone, Haliotis laevigata. Aquaculture 320:91–98

    Article  CAS  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Nielsen LK (2011) AlgaGEM – a genome-scale metabolic reconstruction of algae based on the Chlamydomonas reinhardtii genome. BMC Genomics 12(Suppl 4):S5

    Article  Google Scholar 

  • Dismukes GC, Carrieri D, Bennette N, Ananyev GM, Posewitz MC (2008) Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr Opin Biotechnol 19:235–240

    Article  CAS  Google Scholar 

  • Donald Danforth Plant Science Center (2011) National Alliance for Advanced Biofuels and Bioproducts. http://www.danforthcenter.org/science/programs/biofuel_research/naabb/default.asp. Accessed 20 Dec 2011

  • Dong QL, Zhao XM, Ma HW, Xing XY, Sun NX (2006) Metabolic flux analysis of the two astaxanthin-producing microorganisms Haematococcus pluvialis and Phaffia rhodozyma in the pure and mixed cultures. J Biotechnol 1:1283–1292

    Article  CAS  Google Scholar 

  • Dyne DLV, Blase MG, Clements LD (1999) A strategy for returning agriculture and rural America to long-term full employment using biomass refineries. In: Janick J (ed) Perspectives on New Crops and New Uses. ASHS Press, Alexandria, VA, pp 114–123

    Google Scholar 

  • European Biofuels Technology Forum (2011) Recent algal biofuels activities in the US. http://www.biofuelstp.eu/algae.html. Accessed 20 Dec 2011

  • Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P (2008) Land clearing and the biofuel carbon debt. Science 319:1235–1238

    Article  CAS  Google Scholar 

  • Fernie AR, Geigenberger P, Stitt M (2005) Flux an important, but neglected, component of functional genomics. Curr Opin Plant Biol 8:174–182

    Article  CAS  Google Scholar 

  • Fowler PA, Hughes JM, Elias RM (2006) Biocomposites: technology, environmental credentials and market forces. J Sci Food Agric 86:1781–1789

    Article  CAS  Google Scholar 

  • Fracalossi DM, Lovell RT (1994) Dietary-lipid sources influence responses of channel catfish (Ictalurus punctatus) to challenge with the pathogen Edwardsiella ictaluri. Aquaculture 119:287–298

    Article  CAS  Google Scholar 

  • Gagneux-Moreaux S, Moreau C, Gonzalez JL, Cosson RP (2007) Diatom artificial medium (DAM): a new artificial medium for the diatom Haslea ostrearia and other marine microalgae. J Appl Phycol 19:549–556

    Article  CAS  Google Scholar 

  • Gouda R, Kenchington E, Hatcher B, Vercaemer B (2006) Effects of locally-isolated micro-phytoplankton diets on growth and survival of sea scallop (Placopecten magellanicus) larvae. Aquaculture 259:169–180

    Article  Google Scholar 

  • Harel M, Gavasso S, Leshin J, Gubernatis A, Place AR (2001) The effect of tissue docosahexaenoic and arachidonic acids levels on hypersaline tolerance and leucocyte composition in striped bass (Morone saxatilis) larvae. Fish Physiol Biochem 24:113–123

    Article  CAS  Google Scholar 

  • Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energy Rev 14:1037–1047

    Article  CAS  Google Scholar 

  • Hausmann R, Wagner R (2009) Certification strategies: industrial development and a global market for biofuels. Discussion paper 2009–15 October 2009, Environment and Natural Resources Program, Belfer Center for Science and International Affairs and Sustainability Science Program, Harvard University

    Google Scholar 

  • Hemaiswarya S, Raja R, Ravi Kumar R, Ganesan V, Anbazhagan C (2011) Microalgae: a sustainable feed source for aquaculture. World J Microbiol Biotechnol 27:1737–1746

    Article  Google Scholar 

  • Hill J, Nelson E, Tilman D, Polasky S, Tiffany D (2006) Environmental economic and energetic costs and benefits of biodiesel and ethanol biofuels. Proc Natl Acad Sci USA 103:11206–11210

    Article  CAS  Google Scholar 

  • Hu C, Li M, Li J, Zhu Q, Liu Z (2008a) Variation of lipid and fatty acid compositions of the marine microalga Pavlova viridis (Prymnesiophyceae) under laboratory and outdoor culture conditions. World J Microbiol Biotechnol 24:1209–1214

    Article  CAS  Google Scholar 

  • Hu DW, Liu H, Yang CL, Hu EZ (2008b) The design and optimization for light-algae bioreactor controller based on artificial neural network-model predictive control. Act Astr 63:1067–1075

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008c) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  Google Scholar 

  • Huber GW, Iborra S, Corma A (2006) Synthesis of transportation fuels from biomass: chemistry, catalysis and engineering. Chem Rev 106:4044–4098

    Article  CAS  Google Scholar 

  • Jaeckle WB (1995) Transport and metabolism of alanine and palmitic acid by field-collected larvae of Tedania ignis (Porifera, Demospongiae): estimated consequences of limited label translocation. Biol Bull 189:159–167

    Article  CAS  Google Scholar 

  • Kamm B, Kamm M (2004) Principles of biorefinery. Appl Microbiol Biotechnol 64:137–145

    Article  CAS  Google Scholar 

  • Khozin-Goldberg I, Cohen Z, Pimenta-Leibowitz M, Nechev J, Zilberg D (2006) Feeding with arachidonic acid-rich triacylglycerols from the microalga Parietochloris incisa improved recovery of guppies from infection with Tetrahymena sp. Aquaculture 255:142–150

    Article  CAS  Google Scholar 

  • Knothe GH (2005) Dependence of biodiesel fuel properties on the structure of fatty acid alkyl esters. Fuel Process Technol 86:1059–1070

    Article  CAS  Google Scholar 

  • Leber KM, Pruder GD (1988) Using experimental microcosms in shrimp research: the growth-enhancing effect of shrimp pond water. J World Aquacult Soc 19:197–203

    Article  Google Scholar 

  • Leonardos N, Lucas I (2000) The nutritional value of algae grown under different culture conditions for Mytilus edulis L. larvae. Aquaculture 182:301–315

    Article  Google Scholar 

  • Li Y, Qin JG, Moore RB, Ball AS (2011) Perspectives of marine phytoplankton as a source of nutrition and bioenergy. In: Kersey WT, Munger SP (eds) Marine Phytoplankton. Nova, New York, pp 187–202

    Google Scholar 

  • Lora-Vilchis MC, Maeda-Martinez AN (1997) Ingestion and digestion index of catarina scallop Argopecten ventricosus-circularis, Sowerby II, 1842, veliger larvae with ten microalgae species. Aquacult Res 28:905–910

    Article  Google Scholar 

  • Lundquist T, Woerts IC, Wuinn NWT, Benemann JR (2010) A realistic technology and engineering assessment of algae biofuel production. Lawrence Berkeley National Laboratory, Berkeley, p 178

    Google Scholar 

  • Manahan DT (1983) The uptake and metabolism of dissolved amino acids by bivalve larvae. Biol Bull 164:236–250

    Article  CAS  Google Scholar 

  • Matsumoto M, Hiroko Y, Nobukazu S, Hiroshi O, Tadashi M (2003) Saccharification of marine microalgae using marine bacteria for ethanol production. Appl Biochem Biotech 105:247–254

    Article  Google Scholar 

  • Meher LC, Vidya SD, Naik SN (2006) Technical aspects of biodiesel production by transesterification – a review. Renew Sustain Energy Rev 10:248–268

    Article  CAS  Google Scholar 

  • Moss SM, Pruder GD (1995) Characterization of organic particles associated with rapid growth in juvenile white shrimp, Penaeus vannamei Boone, reared under intensive culture conditions. J Exp Mar Biol Ecol 187:175–191

    Article  Google Scholar 

  • Moss SM, Forster IP, Tacon AGJ (2006) Sparing effect of pond water on vitamins in shrimp diets. Aquaculture 258:388–395

    Article  CAS  Google Scholar 

  • Muller-Feuga A (2000) The role of microalgae in aquaculture: situation and trends. J Appl Phycol 12:527–534

    Article  Google Scholar 

  • Muller-Feuga A (2004) Microalgae for aquaculture: the current global situation and future trends. In: Richmond A (ed) Handbook of microalgal culture. Blackwell Science, Oxford, pp 352–364

    Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282:25475–25486

    Article  CAS  Google Scholar 

  • Mussatto SI, Dragone G, Guimarães P, Silva JP, Carneiro LM, Roberto IC, Vicente A, Domingues L, Teixeira JA (2010) Technological trends, global market, and challenges of bioethanol production. Biotechnol Adv 28:817–830

    Article  CAS  Google Scholar 

  • Mussgnug JH, Thomas-Hall S, Rupprecht J, Foo A, Klassen V, McDowall A, Schenk PM, Kruse O, Hankamer B (2007) Engineering photosynthetic light capture: impacts on improved solar energy to biomass conversion. Plant Biotechnol J 5:802–814

    Article  CAS  Google Scholar 

  • Nath PR, Khozin-Goldberg I, Cohen Z (2012) Dietary supplementation with the microalgae Parieto­chloris incise increases survival and stress resistance in guppy (Poecilia reticulata) fry. Aquacult Nutr 18(2):167–180

    Google Scholar 

  • Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110

    Article  CAS  Google Scholar 

  • Nguyen AV, Thomas-Hall SR, Malnoë A, Timmins M, Mussgnug JH, Rupprecht J, Kruse O, Hankamer B, Schenk PM (2008) Transcriptome of photo-biological hydrogen production induced by sulphur deprivation in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 7:1965–1979

    Article  CAS  Google Scholar 

  • Norton TA, Melkonian N, Andersen R (1996) Algal biodiversity. Phycology 35:308–326

    Article  Google Scholar 

  • Oilworld (2009) http://www.oilworld.biz. Accessed Nov 2010

  • Or-Rashid MM, Kramer JK, Wood MA, McBride BW (2008) Supplemental algal meal alters the ruminal trans-18:1 fatty acid and conjugated linoleic acid composition in cattle. J Anim Sci 86:187–196

    Article  CAS  Google Scholar 

  • Packer M (2009) Algal capture of carbon dioxide; biomass generation as a tool for greenhouse gas mitigation with reference to New Zealand energy strategy and policy. Energy Policy 37:3428–3437

    Article  Google Scholar 

  • Patil V, Kallqvist T, Olsen E, Vogt G, Gislerod HR (2007) Fatty acid composition of 12 microalgae for possible use in aquaculture feed. Aquacult Int 15:1–9

    Article  CAS  Google Scholar 

  • Patnaik S, Samocha TM, Davis DA, Bullis RA, Browdy CL (2009) The use of HUFA-rich algal meals in diets for Litopenaeus vannamei. Aquacult Nutr 12:395–401

    Article  Google Scholar 

  • Pernet F, Bricelj VM, Parrish CC (2005) Effect of varying dietary levels of x6 polyunsaturated fatty acids during early ontogeny of the sea scallop Placopecten magellanicus. J Exp Mar Biol Ecol 327:115–133

    Article  CAS  Google Scholar 

  • PewTrust (2007) Sustainable marine aquaculture: fulfilling the promise; managing the risks. Report of Marine Aquaculture Task Force, Takoma, Park, MD

    Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65:635–648

    Article  CAS  Google Scholar 

  • Raja R, Hemaiswarya S, Rengasamy R (2007) Exploitation of Dunaliella for b-carotene production. Appl Microbiol Biotechnol 74:517–523

    Article  CAS  Google Scholar 

  • Reitan KI, Rainuzzo JR, Øie G, Olsen Y (1997) A review of the nutritional effects of algae in marine fish larvae. Aquaculture 155:207–221

    Article  Google Scholar 

  • Rodolfi L, Zitelli GC, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotech Bioeng 102:100–112

    Article  CAS  Google Scholar 

  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C (2008) Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenerg Res 1:20–43

    Article  Google Scholar 

  • Schuhmann H, Lim DKY, Schenk PM (2012) Perspectives on metabolic engineering for increased lipid contents in microalgae. Biofuels 3(1):71–86

    Google Scholar 

  • Searchinger T, Heimlich R, Houghton RA, Dong F, Elobeid A, Fabiosa J (2008) Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319:1238–1240

    Article  CAS  Google Scholar 

  • Seguineau C, Soudant P, Moal J, Delaporte M, Miner P, Quere C (2005) Techniques for delivery of arachidonic acid to Pacific oyster, Crassostrea gigas, spat. Lipids 40:931–939

    Article  CAS  Google Scholar 

  • Singh J, Gu S (2010) Commercialization potential of microalgae for biofuels production. Renew Sustain Energy Rev 14:2596–2610

    Article  CAS  Google Scholar 

  • Sinha AK, Kumar V, Makkar HPS, De Boeck F, Becker K (2011) Non-starch polysaccharides and their role in fish nutrition-a review. Food Chem 127:1409–1426

    Article  CAS  Google Scholar 

  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  • Subhadra BG (2010) Sustainability of algal biofuel production using integrated renewable energy park (IREP) and algal biorefinery approach. Energy Policy 38:5892–5901

    Article  Google Scholar 

  • Subhadra B, Edwards M (2010) An integrated renewable energy park approach for algal biofuel production in United States. Energy Policy 38:4897–4902

    Article  CAS  Google Scholar 

  • Subhadra B, George G (2011) Algal biorefinery-based industry: an approach to address fuel and food insecurity for a carbon-smart world. J Sci Food Agric 91:2–13

    Article  CAS  Google Scholar 

  • Subhadra B, Lochmann RT, Rawles R, Goodwin A, Chen R (2006a) Growth and hematological parameters of largemouth bass Micropterus salmoides fed diets with different lipid sources. Aquaculture 255:210–222

    Article  CAS  Google Scholar 

  • Subhadra B, Lochmann RT, Rawles R, Chen R (2006b) Growth and hematological parameters of largemouth bass Micropterus salmoides fed diets with poultry meal as primary protein sources with different lipid sources. Aquaculture 260:221–231

    Article  CAS  Google Scholar 

  • Tacon AGJ, Cody JJ, Conquest LD, Divakaran S, Forster IP (2002) Effect of culture system on the nutrition and growth performance of Pacific white shrimp Litopenaeus vannamei (Boone) fed different diets. Aquacult Nutr 8:121–137

    Article  Google Scholar 

  • Thompson PA, Harrison PJ, Whyte JNC (1990) Influence of irradiance on the fatty acid composition of phytoplankton. J Phycol 26:278–288

    Article  CAS  Google Scholar 

  • Thompson PA, Ming-Xin G, Harrison PJ, Whyte JNC (1992) Effects of variation in temperature. II: on the fatty acid composition of eight species of marine phytoplankton. J Phycol 28:488–497

    CAS  Google Scholar 

  • Tilman D, Socolow R, Foley JA, Hill J, Larson E, Lynd L (2009) Beneficial Biofuels: the food, energy, and environment trilemma. Science 325:270–271

    Article  CAS  Google Scholar 

  • Timmins M, Zhou W, Lim L, Thomas-Hall SR, Hankamer B, Marx UC, Smith SM, Schenk PM (2009) The metabolome of Chlamydomonas reinhardtii following induction of anaerobic H2 production by sulphur deprivation. J Biol Chem 284:23415–23425

    Article  Google Scholar 

  • Tocher DR (2003) Metabolism and functions of lipids and fatty acids in teleost fish. Rev Fish Sci 11:107–184

    Article  CAS  Google Scholar 

  • Torrissen OJ (1984) Pigmentation of salmonids—effect of carotenoids in eggs and start-feeding diet on survival and growth rate. Aquaculture 43:185–193

    Article  CAS  Google Scholar 

  • Tyson KS, Bozell J, Wallace R, Petersen E, Moens L (2005) Biomass oil analysis: research needs and recommendations. NREL technical report

    Google Scholar 

  • Tyson RV, Treadwell DD, Simonne EH (2011) Opportunities and challenges to sustainability in aquaponic systems. Hortic Technol 21:6–13

    CAS  Google Scholar 

  • Ueda R, Hirayama S, Sugata K, Nakayama H (1996) Process for the production of ethanol from microalgae. US Patent 5578, 472

    Google Scholar 

  • Utting SD (1986) A preliminary study on growth of Crassostrea gigas larvae and spat in relation to dietary protein. Aquaculture 56:123–138

    Article  Google Scholar 

  • Van Haveren J, Scott EL, Sanders J (2007) Bulk chemicals from biomass. Biofuel Bioprod Biorefin 2:41–57

    Article  Google Scholar 

  • von Elert E (2002) Determination of limiting polyunsaturated fatty acids in Daphnia galeata using a new method to enrich food algae with single fatty acids. Limnol Oceangr 47:1764–1773

    Article  CAS  Google Scholar 

  • Wasieleski W, Atwood H, Stokes A, Browdy C (2006) Effect of natural production in zero exchange suspended microbial floc based super-intensive culture system for white shrimp Litopenaeus vannamei. Aquaculture 258:396–403

    Article  Google Scholar 

  • Welborn JR, Manahan DT (1990) Direct measurements of sugar uptake from seawater into molluscan larvae. Mar Ecol Prog Ser 65:233–239

    Article  CAS  Google Scholar 

  • Wijffels RH, Barbosa MH, Eppink MHM (2010) Microalgae for the production of bulk chemicals and biofuels. Biofuel Bioprod Biorefin 4:287–295

    Article  CAS  Google Scholar 

  • Willke T, Vorlop KD (2004) Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl Microbiol Biotechnol 66:131–142

    Article  CAS  Google Scholar 

  • Yang C, Hua Q, Shimizu K (2000) Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions. Biochem Eng J 6:87–102

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faruq Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ahmed, F., Li, Y., Schenk, P.M. (2012). Algal Biorefinery: Sustainable Production of Biofuels and Aquaculture Feed?. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_2

Download citation

Publish with us

Policies and ethics