Skip to main content

Dinoflagellates as Feedstock for Biodiesel Production

  • Chapter
  • First Online:
The Science of Algal Fuels

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 25))

Abstract

Microalgae seem to be one of the best alternatives to produce biodiesel from biomass. Many studies have been focused in the production of microalgae biomass with known species of different classes including Chlorophyceae, Cyanophyceae, Prasinophyceae and Eustigmatophyceae. However, some species of Dinophyceae and Raphidophyceae classes have the natural ability to produce intense proliferation and reach millions of cells mL−1 as well as to contain a high percentage of lipids in their cell bodies which can be enhanced in terms of quantity and quality during their cell cycle or under stress condition. The study of these features in cultures of dinoflagellates and raphidophyte under controlled system in indoor and outdoor conditions is examined in this chapter that includes the more novel results obtained in recent years. These results allow us to estimate the potential use in the near future of the biomass obtained from these groups of microalgae for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM (1989) Toxic algal blooms and red tides: a global perspective. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides: biology, environmental science, and toxicology. Elsevier, New York, pp 11–16

    Google Scholar 

  • ASTM D6751–08 (2008) Standard specification for biodiesel fuel blend stock (b100) for middle distillate fuels, Annual book of ASTM standards. ASTM Press, Philadelphia

    Google Scholar 

  • Calbet A, Bertos M, Fuentes-Grünewald C, Alacid E, Figueroa R, Renom B, Garcés E (2011) Intraspecific variability in Karlodinium veneficum: growth rates, mixotrophy, and lipid composition. Harmful Algae 10:654–667

    Article  Google Scholar 

  • Chan A (1980) Comparative physiological study of marine diatoms and dinoflagellates in relation to irradiance and cell size. II. Relationship between photosynthesis, growth and carbon/chlorophyll a ratio. J Phycol 16:428–432

    Article  CAS  Google Scholar 

  • Chen CY, Yeh KL (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102(1):71–81

    Article  CAS  Google Scholar 

  • Chi ZY, Liu Y, Frear C, Chen SL (2009) Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Appl Microbiol Biotechnol 81(6):1141–1148

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from microalgae. Biotechnol Adv 25:294–306

    Article  CAS  Google Scholar 

  • Chu F-LE, Lund ED, Littreal PR, Ruck KE, Harvey E (2009) Species-specific differences in long-chain n-3 essential fatty acid, sterol, and steroidal ketone production in six heterotrophic protest species. Aquat Biol 6:159–172

    Article  Google Scholar 

  • Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process 48:1146–1151

    Article  CAS  Google Scholar 

  • De Boer MK, Tyl MR, Fu M, Kulk G, Liebezeit G, Tomas CR, Lenzi A, Naar J, Vrieling EG, Van Rijssel M (2009) Haemolytic activity within the species Fibrocapsa japonica (Raphidophyceae). Harmful Algae 8:699–705

    Article  Google Scholar 

  • Dorantes-Aranda JJ, García-de la Parra LM, Alonso-Rodriguez R, Morquecho L (2009) Hemolytic activity and fatty acids composition in the ichthyotoxic dinoflagellate Cochlodinium polykrikoides isolated from Bahía de La Paz, Gulf of California. Mar Pollut 58:1401–1405

    Article  CAS  Google Scholar 

  • Fernández-Reiriz MJ, Perez-Camacho A, Ferreiro MJ, Blanco J, Planas M, Campos MJ, Labarta U (1989) Biomass production and variation in the biochemical profile (Total protein, carbohydrates, RNA, lipids and fatty acids) of seven marine microalgae. Aquaculture 83:17–37

    Article  Google Scholar 

  • Fiorillo I, Rossi S (2010) Biochemical features of a Protoceratium reticulatum red tide in Chipana Bay (Northern Chile) in summer conditions. Sci Mar 74(4):633–642

    Article  Google Scholar 

  • Flynn KJ, Garrido JL, Zapata M, Opik H, Hipkin CR (1993) Changes in carbon and nitrogen physiology during ammonium and nitrate nutrition and nitrogen starvation in Isochrysis galbana. Eur J Phycol 28:47–52

    Article  Google Scholar 

  • Fuentes-Grünewald C, Garcés E, Rossi S, Camp J (2009) Use of the dinoflagellate Karlodinium veneficum as a sustainable source of biodiesel production. J Ind Microbiol Biotechnol 36(9):1215–1224

    Article  Google Scholar 

  • Fuentes-Grünewald C, Garcés E, Alacid E, Sampedro N, Rossi S, Camp J (2012a) Improvement of lipid production in the marine strains Heterosigma akashiwo and Alexandrium minutum utilizing abiotic parameters. J Ind Microbiol Biotechnol 30:207–216

    Article  Google Scholar 

  • Fuentes-Grünewald C, Garcés E, Alacid E, Rossi S, Camp J (2012b) Biomass and lipid production of dinoflagellates and raphidophytes in indoor and outdoor photobioreactors. J Mar Biotechnol DOI: 10.1007/s10126-012-9450-7

    Google Scholar 

  • Geider RJ, La Roche J (2002) Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis. Eur J Phycol 37:1–17

    Article  Google Scholar 

  • Giner JL, Zhao H, Tomas C (2008) Sterols and fatty acids of three harmful algae previously assigned as Chatonella. Phytochemistry 69:2167–2171

    Article  CAS  Google Scholar 

  • Gouveia L, Oliveira AC (2009) Microalgae as a raw material for biofuels production. J Ind Microbiol Biotechnol 36(2):269–274

    Article  CAS  Google Scholar 

  • Grewe C, Griehl C (2008) Time and media-dependent secondary carotenoid accumulation in Haematococcus pluviales. J Biotechnol 3:1232–1244

    Article  CAS  Google Scholar 

  • Griffiths M, Harrison S (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21(5):493–507

    Article  CAS  Google Scholar 

  • Grobbelaar JU (2010) Microalgal biomass production: challenges and realities. Photosynth Res 106(1):135–144

    Article  CAS  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45(2):160–186

    Article  CAS  Google Scholar 

  • Hu Q, Jarvis SM, Ghirardi E, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54(4):621–639

    Article  CAS  Google Scholar 

  • Huerlimann R, De Ny R, Heimann K (2010) Growth, lipid content, productivity, and fatty acid composition of tropical microalgae for scale-up production. Biotechnol Bioeng 107(2):245–257

    Article  CAS  Google Scholar 

  • Leblond JD, Chapman PJ (2000) Lipid class distribution of highly unsaturated long chain fatty acids in marine dinoflagellates. J Phycol 36:1103–1108

    Article  CAS  Google Scholar 

  • Leblond JD, Anderson B, Kofink D, Logares R, Rengefors K, Kremp AA (2006) Fatty acid sterol composition of two evolutionary closely related dinoflagellate morphospecies from cold Scandinavian brackish and freshwaters. Eur J Phycol 41(3):303–311

    Article  CAS  Google Scholar 

  • Li Y, Horsman M, Wang B, Wu N, Lan CQ (2008) Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl Microbiol Biotechnol 81:629–636

    Article  CAS  Google Scholar 

  • Liang YN, Sarkany N, Cui Y (2009) Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnol Lett 31:1043–1049

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Jackson AE, Blackburn SI (1999) The fatty acids and sterol composition of five marine dinoflagellates. J Phycol 35:710–720

    Article  CAS  Google Scholar 

  • Mansour MP, Volkman JK, Blackburn SI (2003) The effect of growth phase on the lipid class, fatty acid and sterol composition in the marine dinoflagellate, Gymnodinium sp. in batch culture. Phytochemistry 63(2):145–153

    CAS  Google Scholar 

  • Marshall JA, Nichols PD, Hallegraeff GM (2002) Chemotaxonomic surveys of sterols and fatty acids in six marine raphidophyte algae. J Appl Phycol 14:255–265

    Article  CAS  Google Scholar 

  • Molina Grima E, Garcia Camacho F, Sánchez Pérez JA, Acién Fernández FG, Fernández Sevilla JM, Valdés Sanz F (1994) Effect of dilution rate on eicosapentanoic acid productivity of Phaeodactylum tricornutum UTEX 640 in outdoor chemostat culture. Biotechnol Lett 16(10):1035–1040

    Article  Google Scholar 

  • Molina Grima E, Sanchéz Pérez JA, García Camacho F, García Sánchez JL, Fernández Sevilla JM (1995) Variation of fatty acid profile with solar cycle in outdoor chemostat culture of Isochrysis galbana ALII-4. J Appl Phycol 7:129–134

    Article  Google Scholar 

  • Mooney BD, Nichols PD, De Salas MF, Hallegraeff GM (2007) Lipid, fatty acid, and sterol composition of eight species of Kareniaceae (Dinophyta): chemotaxonomy and putative lipid phycotoxins. J Phycol 43:101–111

    Article  CAS  Google Scholar 

  • Morweiser M, Kruse O, Hankamer B, Posten C (2010) Developments and perspectives of photobioreactors for biofuel production. Appl Microbiol Biotechnol 87(4):1291–301

    Article  CAS  Google Scholar 

  • Olenina I, Hajdu S, Edler L, Andersson A, Wasmund N, Busch S, Göbel J, Gromisz S, Huseby S, Huttunen M, Jaanus A, Kokkonen P, Ledaine I, Niemkiewicz E (2006) Biovolumes and size-classes of phytoplankton in the Baltic Sea. HELCOM Baltic Sea environmental proceedings no. 106, 144. Copyright by the Baltic Marine Environment Protection Commission-Helsinki Commission-ISSN 0357-2994

    Google Scholar 

  • Reuss N, Poulsen LK (2002) Evaluation of fatty acids as biomarkers for a natural plankton community: a field study of a spring bloom and a post-bloom period off West Greenland. Mar Biol 141:423–434

    Article  CAS  Google Scholar 

  • Rodolfi L, Chini ZG, Bassi N, Padovani G, Bionde N, Bonini G, Tredici MR (2008) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photo­bioreactor. Biotechnol Bioeng 102:101–112

    Google Scholar 

  • Sánchez JF, Fernández Sevilla JM, Acién FG, Cerón MC, Pérez PJ, Molina GE (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  Google Scholar 

  • Sanford SD, White JM, Shah PS, Wee C, Valverde MA, Meier GR (2010) Feedstock and biodiesel characteristics report. Renewable Energy Group, Inc. www.regfuel.com

  • Sheehan J et al (2006) Are a biofuel sustainable? National Renewable Energy Laboratory, Golden

    Google Scholar 

  • Smayda TJ (1997) Harmful algal blooms: their ecophysiology and general relevance to phytoplankton blooms in the sea. Limnol Oceanogr 42(5.2):1137–1153

    Article  Google Scholar 

  • Stolte W, Garcés E (2006) Ecological aspects of harmful algal in situ population growth rates: ecological studies. In: Graneli E, Turner JT (eds) Ecology of harmful algae. Springer, Heidelberg, pp 139–152

    Chapter  Google Scholar 

  • Tang EPY (1995) The allometry of algal growth rates. J Plankton Res 17(6):1325–1335

    Article  Google Scholar 

  • Tang EPY (1996) Why do dinoflagellates have lower growth rates? J Phycol 32:80–84

    Article  Google Scholar 

  • Usup G, Hamid SZ, Chiet PK, Wah CK, Ahmad A (2008) Marked differences in fatty acid profiles of some planktonic and benthic marine dinoflagellates from Malaysian waters. Phycologia 47(1):105–111

    Article  CAS  Google Scholar 

  • Viso AC, Marty JC (1993) Fatty acids from 28 marine microalgae. Phytochemistry 34(6):1521–1533

    Article  CAS  Google Scholar 

  • Widjaja A, Chien CC, Ju YH (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J Taiwan Inst Chem Eng 40:13–20

    Article  CAS  Google Scholar 

  • Xu H, Miao XL, Wu QY (2006) High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. J Biotechnol 126(4):499–507

    Article  CAS  Google Scholar 

  • Yang J, Xu M, Zhang X, Hu Q, Sommerfeld M, Chen Y (2011) Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresour Technol 102:159–165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Fuentes Grünewald .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Grünewald, C.F. (2012). Dinoflagellates as Feedstock for Biodiesel Production. In: Gordon, R., Seckbach, J. (eds) The Science of Algal Fuels. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 25. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5110-1_13

Download citation

Publish with us

Policies and ethics