Global Scale

  • Susana E. DamboreneaEmail author
  • Javier Echevarría
  • Sonia Ros-Franch
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)


Southern Hemisphere bivalves have provided arguments for the analysis of some interesting topics of global significance, such as bipolarity and the establishment of seaways. The records of Triassic and Jurassic bivalves with bipolar distribution are numerous, and show that bipolarity was a persistent phenomenon in marine environments for hundreds of million years. These examples are potentially very enlightening for the discussion about the causes of this global disjunct distribution pattern, for which an integrative approach is still pending. Bivalves were also significant for the early proposal of a marine connection between western Tethys and eastern Panthalassa in the Early Jurassic, now known as Hispanic Corridor. The evolution of similarity coefficients during time has proven to be a good tool for detecting changes in the relationships of bivalve faunas from western Tethys and eastern Panthalassa. Within regions from the same side of the passage, similarity was high at all times and increased slightly with time during the Early and Middle Jurassic. When comparing regions from either side of the Hispanic Corridor, a sudden increase in similarity beginning very early during the Early Jurassic from low values during Late Triassic times is evident, indicating that the first marine connection between them was probably established by Pliensbachian times. The shallow connection acted first as a screen, being an effective barrier for “neritic” species, while allowing the passage of benthonic littoral species. This is also related to the change in water current pattern. The observed southwards shift of the boundary zones between Tethyan and South Pacific along the western South American coast during the Early Jurassic is coincident with a symmetric northwards shift of the Tethyan/Boreal boundary in the Northern Hemisphere, suggesting a common cause, such as global climate change.


Early Jurassic Jurassic Time Boreal Realm Bipolar Distribution Bivalve Fauna 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aberhan M (1993) Benthic macroinvertebrate associations on a carbonate-clastic ramp in segments of the Early Jurassic back-arc basin of northern Chile (26–29° S). Rev Geol Chile 20:105–136Google Scholar
  2. Aberhan M (1994) Early Jurassic Bivalvia of northern Chile. Part I. Subclasses Palaeotaxodonta, Pteriomorphia, and Isofilibranchia. Beringeria 13:1–115Google Scholar
  3. Aberhan M (1998a) Early Jurassic Bivalvia of western Canada. Part I. Subclasses Palaeotaxodonta, Pterionorphia, and Isofilibranchia. Beringeria 21:57–150Google Scholar
  4. Aberhan M (1998b) Paleobiogeographic Patterns of Pectinoid Bivalves and the Early Jurassic Tectonic evolution of Western Canadian Terranes. Palaios 13:129–148CrossRefGoogle Scholar
  5. Aberhan M (1999) Terrane history of the Canadian Cordillera: estimating amounts of latitudinal displacement and rotation of Wrangellia and Stikinia. Geol Mag 136:481–492CrossRefGoogle Scholar
  6. Aberhan M (2001) Bivalve palaeobiogeography and the Hispanic corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394CrossRefGoogle Scholar
  7. Aberhan M (2002) Opening of the Hispanic corridor and Early Jurassic bivalve biodiversity. In: Crame JA, Owen AW (eds) Paleobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiation. Geol Soc London Spec Publ 194:127–139Google Scholar
  8. Aberhan M, Fürsich FT (1997) Diversity analysis of lower Jurassic bivalves of the Andean Basin and the Pliensbachian/Toarcian mass extinction. Lethaia 29:181–195CrossRefGoogle Scholar
  9. Aberhan M, Hillebrandt A (1999) The bivalve Opisoma in the lower Jurassic of northern Chile. Profil 16:149–164Google Scholar
  10. Arp G, Seppelt S (2012) The bipolar bivalve Oxytoma (Palmoxytoma) cygnipes (Young & Bird, 1822) in the Upper Pliensbachian of Germany. Paläontol Z 86:43–57CrossRefGoogle Scholar
  11. Broglio Loriga C, Neri C (1976) Aspetti paleobiologici e paleogeografici della facies a “Lithiotis” (Giurese inf.). Riv Ital Paleontol Stratigr 82:651–705Google Scholar
  12. Campbell HJ (1994) The Triassic Bivalves Daonella and Halobia in New Zealand, New Caledonia, and Svalbard. Inst Geol Nucl Sci Mon 4:1–166Google Scholar
  13. Cecca F (2009) La dimension biogéographique de l’évolution de la Vie. CR Palevol 8:119–132CrossRefGoogle Scholar
  14. Crame JA (1981) The occurrence of Anopaea (Bivalvia: Inoceramidae) in the Antarctic Peninsula. J Mollusc Stud 47:206–219Google Scholar
  15. Crame JA (1986) Late Mesozoic bipolar bivalve faunas. Geol Mag 123:611–618CrossRefGoogle Scholar
  16. Crame JA (1987) Late Mesozoic bivalve biogeography of Antarctica. Proc Sixth Gondwana Symp (Columbus, Ohio):93–102Google Scholar
  17. Crame JA (1992) Evolutionary history of the polar regions. Hist Biol 6:37–60CrossRefGoogle Scholar
  18. Crame JA (1993) Bipolar molluscs and their evolutionary implications. J Biogeogr 20:145–161CrossRefGoogle Scholar
  19. Crame JA (1996a) Evolution of high-latitude molluscan faunas. In: Taylor JD (ed) Origin and evolutionary radiation of the Mollusca. Oxford University Press, OxfordGoogle Scholar
  20. Crame JA (1996b) Antarctica and the evolution of taxonomic diversity gradients in the marine realm. Terra Antarct 3:121–134Google Scholar
  21. Damborenea SE (1990) Middle Jurassic inoceramids from Argentina. J Paleontol 64:736–759Google Scholar
  22. Damborenea SE (1993) Early Jurassic South American pectinaceans and circum-Pacific palaeobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 100:109–123CrossRefGoogle Scholar
  23. Damborenea SE (1996) Palaeobiogeography of Early Jurassic bivalves along the southeastern Pacific margin. 13º Congr Geol Argent y 3º Congr Explor Hidrocarb (Buenos Aires). Actas 5:151–167Google Scholar
  24. Damborenea SE (2000) Hispanic corridor: its evolution and the biogeography of bivalve molluscs. In: Hall RL, Smith PL (eds) Advances in Jurassic research 2000. GeoResearch Forum, vol 6. pp 369–380Google Scholar
  25. Damborenea SE (2002a) Early Jurassic bivalves from Argentina. Part 3: Superfamilies Monotoidea, Pectinoidea, Plicatuloidea and Dimyoidea. Palaeontographica A 265:1–119Google Scholar
  26. Damborenea SE (2002b) Jurassic evolution of Southern Hemisphere marine palaeobiogeographic units based on benthonic bivalves. Geobios 35 MS 24:51–71Google Scholar
  27. Damborenea SE (2004) Early Jurassic Kalentera (Bivalvia) from Argentina and its palaeobiogeograhical significance. Ameghiniana 41:185–198Google Scholar
  28. Damborenea SE, González-León CM (1997) Late Triassic and Early Jurassic bivalves from Sonora, Mexico. Rev Mex Cienc Geol 14:178–201Google Scholar
  29. Damborenea SE, Manceñido MO (1979) On the palaeogeographical distribution of the pectinid genus Weyla (Bivalvia, Lower Jurassic). Palaeogeogr Palaeoclimatol Palaeoecol 27:85–102CrossRefGoogle Scholar
  30. Damborenea SE, Manceñido MO (1988) Weyla: semblanza de un bivalvo Jurásico andino. Actas 5o Congr Geol Chileno 2: C13–C25Google Scholar
  31. Damborenea SE, Manceñido MO (1992) A comparison of Jurassic marine benthonic faunas from South America and New Zealand. J Roy Soc N Z 22:131–152CrossRefGoogle Scholar
  32. Damborenea SE, Manceñido MO (2012) Late Triassic bivalves and brachiopods from southern Mendoza, Argentina. Rev Paléobiol VS 11:317–344 Google Scholar
  33. Darwin C (1859) The origin of species by means of natural selection, or the preservation of favoured races in the struggle for life. John Murray, LondonGoogle Scholar
  34. Dhondt AV (1992) Cretaceous inoceramid biogeography: a review. Palaeogeogr Palaeoclimatol Palaeoecol 92:217–232CrossRefGoogle Scholar
  35. Dommergues JL, Meister C (1991) Area of mixed marine faunas between two major paleogeographical realms, exemplified by the Early Jurassic (Late Sinemurian and Pliensbachian) ammonites in the Alps. Palaeogeogr Palaeoclimatol Palaeoecol 86:265–282CrossRefGoogle Scholar
  36. Donoghue MJ (2011) Bipolar biogeography. Proc Nat Acad Sci 108:6341–6342CrossRefGoogle Scholar
  37. Frebold H (1957) The Jurassic Fernie group in the Canadian Rocky Mountains and foothills. Memoir Geol Soc Surv Canada 287:1–197Google Scholar
  38. Fürsich FT, Sykes RM (1977) Palaeobiogeography of the European Boreal realm during Oxfordian (Upper Jurassic) times: a quantitative approach. N Jb Geol Paläontol Abh 172:271–329Google Scholar
  39. Grant-Mackie JA, Aita Y, Balme BE, Campbell HJ, Challinor AB, MacFarlan DAB, Molnar RE, Stevens GR, Thulborn RA (2000) Jurassic palaeobiogeography of Australasia. In: Wright AJ, Young GC, Talent JA, Laurie JR (eds) Palaeobiogeography of Australasian faunas and floras. Memoir of the Association of Australasian Palaeontologists, vol 23. pp 311–353Google Scholar
  40. Hallam A (1969) Faunal realms and facies in the Jurassic. Palaeontology 12:1–18Google Scholar
  41. Hallam A (1971) Provinciality in Jurassic faunas in relation to facies and palaeogeography. In: Middlemiss FA, Rawson PF, Newall G (eds) Faunal provinces in space and time. Geol J Spec Issue 4:129–152Google Scholar
  42. Hallam A (1977) Jurassic bivalve biogeography. Paleobiology 3:58–73Google Scholar
  43. Hallam A (1981) Relative importance of plate movements, Eustasy, and climate in controlling major biogeographical changes since the Early Mesozoic. In: Nelson G, Rosen DE (eds) Vicariance biogeography: a critique. Columbia University Press, New YorkGoogle Scholar
  44. Hallam A (1983) Early and mid-Jurassic molluscan biogeography and the establishement of the central Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 43:181–193CrossRefGoogle Scholar
  45. Hallam A (1994) Jurassic climates as inferred from the sedimentary and fossil record. In: Allen J, Hoskins B, Sellwood B, Spicer R, Valdes P (eds) Palaeoclimates and their modelling with special reference to the Mesozoic Era. Chapman and Hall, LondonGoogle Scholar
  46. Hallam A, Wignall PB (1997) Mass extinctions and their aftermath. Oxford University Press, OxfordGoogle Scholar
  47. Hayami I (1975) A systematic survey of the Mesozoic Bivalvia from Japan. Bull Univ Mus Univ Tokyo 10:1–249Google Scholar
  48. Hayami I (1984) Jurassic Marine Bivalve Faunas and biogeography in Southeast Asia. Geol Palaeontol SE Asia 25:229–237Google Scholar
  49. Hayami I (1987) Geohistorical background of Wallace’s line and Jurassic marine biogeography. In: Taira A, Tashiro M (eds) Historical biogeography and plate tectonic evolution of Japan and Eastern Asia.  , TokyoGoogle Scholar
  50. Hayami I (1990) Geographic distribution of Jurassic Faunas in Eastern Asia. In: Ichikawa K, Mizutani S, Hara I, Hada S, Yao A (eds) Pre-cretaceous terranes of Japan. Publication of IGCP Project 224, OsakaGoogle Scholar
  51. Hillebrandt A (1981) Kontinentalverschiebung und die paläozoogeographischen Beziehungen des südamerikanischen Lias. Geol Runds 70:570–582CrossRefGoogle Scholar
  52. Hillebrandt A, Westermann GEG, Callomon JH, Detterman RL (1992) Ammonites of the Circum-Pacific region. In: Westermann GEG (ed) The Jurassic of the Circum-Pacific. Cambridge University Press, New YorkGoogle Scholar
  53. Iglesia-Llanos MP, Riccardi AC, Singer SE (2006) Palaeomagnetic study of lower Jurassic marine strata from the Neuquén Basin, Argentina: a new Jurassic apparent polar wander path for South America. Earth Planet Sci Let 252:379–397CrossRefGoogle Scholar
  54. Imlay RW (1965) Jurassic marine faunal differentiation in North America. J Paleontol 39:1023–1038Google Scholar
  55. Jaworski E (1929) Eine Lias-Fauna aus Nordwest-Mexiko. Abh Schweizer Palaeontol Ges 48:1–12Google Scholar
  56. Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of Palaeobiogeography. Elsevier, AmsterdamGoogle Scholar
  57. Kelly SRA (1984) Bivalvia of the Spilsby Sandstone and Sandringham Sands (Late Jurassic–Early Cretaceous) of eastern England. Part I. Palaeontogr Soc Mon 137(566):1–100Google Scholar
  58. Kristan-Tollmann E, Tollmann A (1981) Die Stellung der Tethys in der Trias und die Herkunft ihrer Fauna. Mitt österreich Gesells 74–75:129–135Google Scholar
  59. Krobicki M, Golonka J (2009) Palaeobiogeography of Early Jurassic Lithiotis-type bivalve buildups as recovery effect after Triassic/Jurassic mass extinction and their connection with Asian palaeogeography. Acta Geoscient Sin 30(supl. 1):30–33Google Scholar
  60. Liu C (1995) Jurassic bivalve palaeobiogeography of the Proto-Atlantic and the application of multivariate analysis methods in palaeobiogeography. Beringeria 16:3–123Google Scholar
  61. Liu C, Heinze M, Fürsich FT (1998) Bivalve provinces in the Proto-Atlantic and along the southern margin of the Tethys in the Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 137:127–151CrossRefGoogle Scholar
  62. Lutaenko KA (1993) Climatic optimum during the Holocene and the distribution of warm-water mollusks in the Sea of Japan. Palaeogeogr Palaeoclimatol Palaeoecol 102:273–281CrossRefGoogle Scholar
  63. McRoberts CA (1997) Late Triassic (Norian–Rhaetian) bivalves from the Antimonio Formation, northwestern Sonora, Mexico. Rev Mex Cienc Geol 14(2):167–177Google Scholar
  64. Milova LV (1988) Ranneyurskie dvustvorchatye Mollyuski Severo-Vostoka SSSR. Akad Nauk SSSR, VladivostokGoogle Scholar
  65. Muller S, Ferguson H (1939) Mesozoic Stratigraphy of the Hawthorne and Tonopah Quadrangles Nevada. Bull Geol Soc Am 50(10):1573–1627Google Scholar
  66. Nauss AL, Smith PL (1988) Lithiotis (Bivalvia) bioherms in the Lower Jurassic of East-central Oregon, U.S.A. Palaeogeogr Palaeoclimatol Palaeoecol 65:253–268CrossRefGoogle Scholar
  67. Newton CR (1988) Significance of “Tethyan” fossils in the American Cordillera. Science 242:385–391CrossRefGoogle Scholar
  68. Riccardi AC (1991) Jurassic and Cretaceous marine connections between the Southeast Pacific and Tethys. Palaeogeogr Palaeoclimatol Palaeoecol 87:155–189CrossRefGoogle Scholar
  69. Ros S, Márquez-Aliaga A, Damborenea SE (2012) Comprehensive database on Induan (Lower Triassic) to Sinemurian (Lower Jurassic) marine bivalve genera and their paleobiogeographic record. Paleontol Contrib Univ Kansas (in press)Google Scholar
  70. Sandoval J, Westermann GEG (1986) The Bajocian (Jurassic) ammonite fauna of Oaxaca, Mexico. J Paleontol 60:1220–1271Google Scholar
  71. Sandy MR, Stanley GD (1993) Late Triassic brachiopods from the Luning formation, Nevada, and their paleogeographocal significance. Palaeontology 36:439–480Google Scholar
  72. Scholz A, Aberhan M, González-León CM (2008) Early Jurassic bivalves of the Antimonio terrane (Sonora, NW Mexico): taxonomy, biogeography, and paleogeographic implications. Geol Soc Am Spec Pap 442:269–312Google Scholar
  73. Sey II, Kalacheva ED (1985) Invasions of Tethyan ammonites into the Late Jurassic Boreal basins of East U.S.S.R. In: Westermann GEG (ed) Jurassic biogeography and stratigraphy of East USSR. IGCP Project 171: Circum-Pacific Jurassic, Special Paper, vol 10. pp 14–17Google Scholar
  74. Sey II, Polubotko IV (1992) Atlas, Pl. In: Westermann GEG (ed) The Jurassic of the Circum-Pacific. Cambridge University Press, Cambridge, pp 120–127Google Scholar
  75. Sha J (1996) Antitropicality of the Mesozoic Bivalves. In: Pang ZH et al (eds) Advances in solid earth sciences. Science Press, PekingGoogle Scholar
  76. Sha J (2002) Hispanic Corridor formed as early as Hettangian: on the basis of bivalve fossils. Chinese Sci Bull 47:414–417CrossRefGoogle Scholar
  77. Sha J (2003) Plankton and pseudoplankton of the marine Mesozoic bivalves. Acta Paleontol Sin 42:408–416Google Scholar
  78. Shi GR, Grunt TA (2000) Permian Gondwana-Boreal antitropicality with special reference to brachiopod faunas. Palaeogeogr Palaeoclimatol Palaeoecol 155:239–263CrossRefGoogle Scholar
  79. Smith PL (1989) Paleobiogeography and plate tectonics. Geosci Canada 15:261–279Google Scholar
  80. Smith PL, Tipper HW (1986) Plate tectonics and paleobiogeography: Early Jurassic (Pliensbachian) endemism and diversity. Palaios 1:399–412CrossRefGoogle Scholar
  81. Smith PL, Westermann GEG, Stanley GD Jr, Yancey TE (1990) Paleobiogeography of the Ancient Pacific (response by Newton, C.R.). Science 249:680–683Google Scholar
  82. Stanley GD Jr, González-León CM (1997) New late Triassic scleractinian corals from the Antimonio Formation, northwestern Sonora, Mexico. Rev Mex Cienc Geol 14:202–207Google Scholar
  83. Stanley GD Jr, González-León C, Sandy MR, Senowbari-Daryan B, Doyle P, Tamura M, Erwin DH (1994) Upper Triassic invertebrates from the Antimonio Formation, Sonora, Mexico. Paleontol Soc Mem 36 (Suppl J Paleontol 68):1–33Google Scholar
  84. Tamura M (1990) The distribution of Japanese Triassic bivalve funas with special reference to parallel distribution of inner Arcto-Pacific fauna and outer Tethyan fauna in Upper Triassic. In: Ichikawa K, Mizutani S, Hara I, Hara S, Yao A (eds) Pre-Cretaceous terranes of Japan. Publ. IGCP Project, vol 224. pp 347–-359Google Scholar
  85. Taylor DG, Callomon JH, Hall R, Smith PL, Tipper HW, Westermann GEG (1984) Jurassic ammonite biogeography of western North America: the tectonic implications. In: Westermann GEG (ed) Jurassic-Cretaceous Biochronology and Paleogeography of North America. Geol Assoc Canada Spec Pap 27:121–141Google Scholar
  86. Tozer ET (1982) Marine Triassic faunas of North America: their significance for assessing plate and terrane movements. Geol Runds 71:1077–1104CrossRefGoogle Scholar
  87. Yancey TE, Stanley GD Jr, Piller WE, Woods MA (2005) Biogeography of the Late Triassic wallowaconchid megalodontoid bivalves. Lethaia 38:351–365CrossRefGoogle Scholar
  88. Zinsmeister WJ (1982) Late Cretaceous-Early Tertiary molluscan biogeography of the southern Circum-Pacific. J Paleontol 56:84–102Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Susana E. Damborenea
    • 1
    Email author
  • Javier Echevarría
    • 1
  • Sonia Ros-Franch
    • 1
  1. 1.Departamento Paleontología InvertebradosMuseo de Ciencias Naturales La PlataLa PlataArgentina

Personalised recommendations