Advertisement

A Bivalve Perspective

  • Susana E. DamboreneaEmail author
  • Javier Echevarría
  • Sonia Ros-Franch
Chapter
Part of the SpringerBriefs in Earth System Sciences book series (BRIEFSEARTHSYST)

Abstract

Mesozoic bivalves have been the subject of many paleobiogeographic studies, either with the aim of recognizing units, to argue about the proposal of opening of seaways and exotic terranes movements, or even to relate biogeography with extinction and evolution. With a few notable exceptions, Northern Hemisphere data were used and frequently conclusions extrapolated worldwide. In the analysis of bivalve geographic distribution, some special issues should be taken into account, such as larval type, mode of life, and tolerance to certain environmental factors, which are here briefly discussed for Southern Hemisphere bivalves. Special attention is paid to the proposed pseudoplanktonic habit as an aid to dispersal, to reef-building bivalves, and to those with special low-oxygen tolerance. For some of the various analyses performed, Triassic-Jurassic bivalve genera were classified according to their paleobiogeographic affinities in truly cosmopolitan, low-latitude (Tethyan), high-latitude (austral or bipolar), trans-temperate (Pacific), and endemic.

Keywords

Fossil Taxon Reef Facies Larval Type Planktotrophic Larva Reef Builder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aberhan M (1998) Paleobiogeographic patterns of pectinoid Bivalves and the early Jurassic tectonic evolution of western Canadian terranes. Palaios 13:129–148CrossRefGoogle Scholar
  2. Aberhan M (1999) Terrane history of the Canadian Cordillera: estimating amounts of latitudinal displacement and rotation of Wrangellia and Stikinia. Geol Mag 136(5):481–492CrossRefGoogle Scholar
  3. Aberhan M (2001) Bivalve palaeobiogeography and the hispanic corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394CrossRefGoogle Scholar
  4. Aberhan M (2002) Opening of the Hispanic Corridor and early Jurassic bivalve biodiversity. In: Crame JA, Owen AW (eds) Paleobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiation. Geol Soc London Spec Publ 194:127–139Google Scholar
  5. Aberhan M, Pálfy J (1996) A low oxygen tolerant East Pacific flat clam (Posidonotis semiplicata) from the lower Jurassic of the Canadian cordillera. Can J Earth Sci 33:993–1006CrossRefGoogle Scholar
  6. Accorsi Benini C (1979) Lithioperna, un nuovo genere fra i grandi lamellibranchi della facies a “Lithiotis”. Morfologia, tassonomia ed analisi morfofunzionale. Boll Soc Geol Ital 18:221–257Google Scholar
  7. Accorsi Benini C (1981) Opisoma Stoliczka, 1871 lamellibranco eterodonte della facies a “Lithiotis” (Giurassic inf., Liassico). Boll Soc Paleontol Ital 20:197–228Google Scholar
  8. Accorsi Benini C (1985) The large liassic bivalves: symbiosis or longevity. Palaeogeogr Palaeoclimatol Palaeoecol 52:21–33CrossRefGoogle Scholar
  9. Accorsi Benini C, Broglio Loriga C (1977) Lithiotis Gümbel, 1871 e Cochlearites Reis, 1903. I. Revisione morfologica e tassonomica. Boll Soc Paleontol Ital 16:15–60Google Scholar
  10. Accorsi Benini C, Broglio Loriga C (1982) Microstructure, modalità di accrescimento e priodicità nei lamellibranchi liasssici (Facies a “Lithiotis”). Geol Romana 21:795–823Google Scholar
  11. Aguirre-Urreta MB, Casadío S, Cichowolski M, Lazo DG, Rodríguez DL (2008) Afinidades paleobiogeográficas de los invertebrados cretácicos de la Cuenca Neuquina. Ameghiniana 45:593–613Google Scholar
  12. Al-Suwaidi AH, Angelozzi GN, Baudin F, Damborenea SE, Hesselbo SP, Jenkyns HC, Manceñido MO, Riccardi AC (2010) First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. J Geol Soc London 167:633–636CrossRefGoogle Scholar
  13. Ando H (1987) Evolution and biogeography of Late Triassic bivalve Monotis from Japan. In: Proceedings International Symposium on Shallow Tethys 2 (Wagga Wagga 1986), pp 233–246Google Scholar
  14. Böhm G (1906) Zur Stellung von Lithiotis. Centralbl Mineral Geol Paläontol 1906:161–167Google Scholar
  15. Broglio Loriga C, Neri C (1976) Aspetti paleobiologici e palaeogeografici della facies a “Lithiotis” (Giurese inf.). Riv Ital Paleontol e Stratigr 82:651–705Google Scholar
  16. Campbell HJ (1994) The Triassic bivalves Daonella and Halobia in New Zealand, New Caledonia, and Svalbard. Inst Geol Nucl Sci Monogr 4:1–166Google Scholar
  17. Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian (early Jurassic) mass extinction. J Geol Soc London 166:859–872CrossRefGoogle Scholar
  18. Chen J (1982) Mesozoic transgressions, regressions and bivalve provinces in China. Acta Geol Sin 21:334–346Google Scholar
  19. Chinzei K (1982) Morphological and structural adaptations to soft substrates in the early Jurassic monomyarians Lithiotis and Cochlearites. Lethaia 15:179–197CrossRefGoogle Scholar
  20. Coates AG (1973) Cretaceous tethyan coral-rudist biogeography related to the evolution of the Atlantic Ocean. In: Hughes (ed) Organisms and continents through time. Spec Pap in Palaeontol 12:169–174Google Scholar
  21. Cope JCW (2002) Diversification and biogeography of bivalves during the Ordovician period. In: Crame JA, Owen AW (eds) Paleobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiation. Geol Soc Spec Publ 194:25–52Google Scholar
  22. Crame JA (1986) Late Mesozoic bipolar bivalve faunas. Geol Mag 123:611–618CrossRefGoogle Scholar
  23. Crame JA (1993) Bipolar molluscs and their evolutionary implications. J Biogeogr 20:145–161CrossRefGoogle Scholar
  24. Crame JA (1996) Evolution of high-latitude molluscan faunas. In: Taylor JD (ed) Origin and evolutionary radiation of the mollusca. Oxford University Press, OxfordGoogle Scholar
  25. Crame JA (2002) Evolution of taxonomic diversity gradients in the marine realm: a comparison of late Jurassic and recent bivalve faunas. Paleobiology 28:184–207CrossRefGoogle Scholar
  26. Damborenea SE (1989) El género Posidonotis Losacco (Bivalvia, Jurásico inferior): su distribución estratigráfica y paleogeográfica. Actas 4° Congr Argent Paleontol y Bioestratigr (Mendoza, 1986) 4:45–51Google Scholar
  27. Damborenea SE (1993) Early Jurassic South American pectinaceans and circum-Pacific paleobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 100:109–123CrossRefGoogle Scholar
  28. Damborenea SE (1996) Paleobiogeography of early Jurassic bivalves along the southeastern Pacific margin. 13° Congr Geol Argent y 3° Congr Explorac Hidrocarb (Buenos Aires). Actas 5:151–167Google Scholar
  29. Damborenea SE (1998) The bipolar bivalve Kolymonectes in South America and the diversity of Propeamussiidae in Mesozoic times. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution—paleobiological studies honoring Norman D. Newell University Calgary Press, CalgaryGoogle Scholar
  30. Damborenea SE (2000) Hispanic Corridor: its evolution and the biogeography of bivalve molluscs. In: Hall RL, Smith PL (eds) Advances in Jurassic research 2000. Geo Res Forum 6:369–380Google Scholar
  31. Damborenea SE (2002) Jurassic evolution of Southern Hemisphere marine palaeobiogeographic units based on benthonic bivalves. Geobios 35, MS 24:51–71Google Scholar
  32. Damborenea SE, Manceñido MO (1979) On the palaeogeographical distribution of the pectinid genus Weyla (Bivalvia, Lower Jurassic). Palaeogeogr Palaeoclimatol Palaeoecol 27:85–102CrossRefGoogle Scholar
  33. Damborenea SE, Manceñido MO (1988) Weyla: semblanza de un bivalvo Jurásico andino. Actas 5o Congr Geol Chileno 2:C13–C25 (Santiago de Chile)Google Scholar
  34. Darragh TA (1985) Molluscan biogeography and biostratigraphy of the Tertiary of southeastern Australia. Alcheringa 9:83–116CrossRefGoogle Scholar
  35. Dhondt AV (1992) Cretaceous inoceramid biogeography: a review. Palaeogeogr Palaeoclimatol Palaeoecol 92:217–232CrossRefGoogle Scholar
  36. Dhondt AV (1999) Palaeogeographical distribution patterns in Upper Cretaceous bivalves. Malacol Soc London, Biology and evolution of the bivalvia, Paper and Poster Abstracts: 18, CambridgeGoogle Scholar
  37. Dickins JM (1993) Permian bivalve faunas. stratigraphical and geographical distribution. C R 12° Congr Internat Stratigr et Géol du Carbonifère et Permien 1:523–536Google Scholar
  38. Douvillé H (1900) Sur la distribution géographique des Rudistes, des orbitolines at des orbitoides. Bull, Soc Géol France, 3° sér. 28:222–235Google Scholar
  39. Duff KL (1978) Bivalvia of the English lower Oxford Clay (Middle Jurassic). Palaeontograph Soc Monogr 132(553):1–137Google Scholar
  40. Emerson WK (1978) Mollusks with Indo-Pacific affinities in the eastern Pacific Ocean. Nautilus 92:91–96Google Scholar
  41. Etter W (1996) Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeogr Palaeoclimatol Palaeoecol 126:325–341CrossRefGoogle Scholar
  42. Flessa KW, Jablonski D (1995) Biogeography of recent marine bivalve molluscs and its implications for paleobiogeography and the geography of extinction: a progress report. Hist Biol 10:25–47CrossRefGoogle Scholar
  43. Fürsich FT, Sykes RM (1977) Palaeobiogeography of the European Boreal realm during Oxfordian (upper Jurassic) times: a quantitative approach. N Jb Geol Paläontol Adhand 172:271–329Google Scholar
  44. Grant-Mackie JA, Aita Y, Balme BE, Campbell HJ, Challinor AB, MacFarlan DAB, Molnar RE, Stevens GR, Thulborn RA (2000) Jurassic palaeobiogeography of Australasia. In: Wright AJ, Young GC, Talent JA, Laurie JR (eds) Paleobiogeography of Australasian faunas and floras. Mem Assoc Australas Palaeontol 23:311–353Google Scholar
  45. Hall CA (1964) Shallow water marine climates and molluscan provinces. Ecology 45:226–234CrossRefGoogle Scholar
  46. Hallam A (1967) The bearing of certain palaeozoogeographic data on continental drift. Palaeogeogr Palaeoclimatol Palaeoecol 3:201–241CrossRefGoogle Scholar
  47. Hallam A (1969) Faunal realms and facies in the Jurassic. Palaeontology 12:1–18Google Scholar
  48. Hallam A (1971) Provinciality in Jurassic faunas in relation to facies and palaeogeography. In: Middlemiss FA, Rawson PF, Newall G (eds) Faunal provinces in space and time. Geol J Spec Issue 4:129–152Google Scholar
  49. Hallam A (1977) Jurassic bivalve biogeography. Paleobiology 3:58–73Google Scholar
  50. Hallam A (1981) Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In: Nelson G, Rosen DE (eds) Vicariance biogeography: a critique. Columbia University Press, New YorkGoogle Scholar
  51. Hallam A (1983) Early and mid-Jurassic molluscan biogeography and the establishment of the central Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 43:181–193CrossRefGoogle Scholar
  52. Hallam A, Biró-Bagóczky L, Pérez E (1986) Facies analysis of the Lo Valdés Formation (Tithonian-Hauterivian) of the high cordillera of central Chile, and the palaeogeographic evolution of the Andean Basin. Geol Mag 123:425–435CrossRefGoogle Scholar
  53. Hayami I (1961) On the Jurassic pelecypod faunas in Japan. J Fac Sci, Univ Tokyo, Sect II. Geol Mineral Geogr Geophys 13:243–343Google Scholar
  54. Hayami I (1969) Notes on Mesozoic “planktonic” bivalves. J Geol Soc Japan 75:375–385CrossRefGoogle Scholar
  55. Hayami I (1984) Jurassic marine bivalve faunas and biogeography in Southeast Asia. Geol Palaeontol Southeast Asia 25:229–237Google Scholar
  56. Hayami I (1987) Geohistorical background of Wallace’s Line and Jurassic marine biogeography. In: Taira A, Tashiro M (eds) Historical biogeography and plate tectonic evolution of Japan and Eastern Asia, TokyoGoogle Scholar
  57. Hayami I (1989) Outlook of the post-Paleozoic historical biogeography of pectinids in the Western Pacific region. Univ Mus Univ Tokyo Nat Cult 1:3–25Google Scholar
  58. Hayami I (1990) Geographic distribution of Jurassic faunas in eastern Asia. In: Ichikawa K, Mizutani S, Hara I, Hada S, Yao A (eds) Pre-Cretaceous terranes of Japan. Publication of IGCP project 224, OsakaGoogle Scholar
  59. Hillebrandt A (1980) Paleozoogeografía de Jurásico marino (Lías hasta Oxfordiano) en Suramérica. In: Zeil W (ed) Nuevos resultados de la investigación geocientífica alemana en Latinoamérica. Deuts Forschungs and Inst Colabor Cient, TübingenGoogle Scholar
  60. Hillebrandt A (1981) Kontinentalverschiebung und die paläozoogeographischen Beziehungen des südamerikanischen Lias. Geolog Runds 70:570–582CrossRefGoogle Scholar
  61. Jablonski D, Hunt G (2006) Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. Am Nat 168:556–564CrossRefGoogle Scholar
  62. Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89CrossRefGoogle Scholar
  63. Jablonski D, Valentine JW (1990) From regional to total geographic ranges: testing the relationship in recent bivalves. Paleobiology 16:126–142Google Scholar
  64. Jablonski D, Roy K, Valentine JW (1999) Dissecting the latitudinal gradient in marine bivalves. Malacol Soc London, Biology and evolution of the Bivalvia, Paper and Poster Abstracts: 24, CambridgeGoogle Scholar
  65. Jablonski D, Roy K, Valentine JW (2000) Analysing the latitudinal gradient in marine bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geol Soc Spec Publ 177:361–365Google Scholar
  66. Jefferies R, Minton P (1965) The mode of life of two Jurassic species of “Posidonia” (Bivalvia). Palaeontology 8:156–185Google Scholar
  67. Johannesson K (1988) The paradox of rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol 99:507–513CrossRefGoogle Scholar
  68. Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, AmsterdamGoogle Scholar
  69. Kauffman EG (1975) Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. In: Caldwell WGE (ed) The Cretaceous System in the Western Interior of North America. Spec Pap Geol Assoc Can 13:163–194Google Scholar
  70. Kiessling W, Aberhan M (2007) Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. J Biogeogr 34:1473–1489CrossRefGoogle Scholar
  71. Knight RI, Morris NJ (1996) Inoceramid larval planktotrophy: evidence from the Gault Formation (Middle and basal Upper Albian), Folkestone, Kent. Palaeontology 39:1027–1036Google Scholar
  72. Kobayashi T, Tamura M (1983a) On the oriental province of the Tethyan realm in the Triassic period. Proc Jpn Ac Ser B 59:203–206Google Scholar
  73. Kobayashi T, Tamura M (1983b) The Arcto-Pacific Realm and the trigoniidae in the Triassic period. Proc Jpn Acad Ser B 59:207–210CrossRefGoogle Scholar
  74. Körner K (1937) Marine (Cassianer-Raibler) Trias am Nevado de Acrotambo (Nord-Peru). Palaeontogr A 86:145–237Google Scholar
  75. Kříž J (1996) Maida nov. gen., the oldest known nektoplanktic bivalve from the Přídolí (Silurian) of Europe. Geobios 29:529–535CrossRefGoogle Scholar
  76. Krobicki M, Golonka J (2009) Palaeobiogeography of early Jurassic Lithiotis-type bivalve buildups as recovery effect after Triassic/Jurassic mass extinction and their connection with Asian palaeogeography. Acta Geoscient Sinica 30 supl 1:30–33Google Scholar
  77. Liu C (1995) Jurassic bivalve palaeobiogeography of the proto-Atlantic and the application of multivariate analysis methods in palaeobiogeography. Beringeria 16:3–123Google Scholar
  78. Liu C, Heinze M, Fürsich FT (1998) Bivalve provinces in the proto-Atlantic and along the southern margin of the Tethys in the Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 137:127–151CrossRefGoogle Scholar
  79. Liu C, Xie Y, Chen L (2007) Distribution of larval developmental types of marine bivalves along the eastern Pacific coast. Beringeria 37:95–103Google Scholar
  80. Malchus N (2004) Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontol Pol 49(1):85–110Google Scholar
  81. Marwick J (1953) Faunal migrations in New Zealand seas during the Triassic and Jurassic. N Z J Sci Technol B 34:317–321Google Scholar
  82. Masse JP (1992) The Lower Cretaceous Mesogean benthic ecosystems: palaeoecologic aspects and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 91:331–345CrossRefGoogle Scholar
  83. McRoberts CA (1997) Late Triassic North American halobiid bivalves; diversity trends and circum-Pacific correlations. In: Dickins JM et al (eds) Late Paleozoic and Early Mesozoic circum-Pacific events. Cambridge University Press, Cambridge, p 22Google Scholar
  84. McRoberts CA, Aberhan M (1997) Marine diversity and sea-level changes: numerical tests for association using early Jurassic bivalves. Geol Runds 86:160–167CrossRefGoogle Scholar
  85. Nauss AL, Smith PL (1988) Lithiotis (Bivalvia) bioherms in the lower Jurassic of East-central Oregon, USA. Palaeogeogr Palaeoclimatol Palaeoecol 65:253–268CrossRefGoogle Scholar
  86. Newton CR (1983) Paleozoogeographic affinities of Norian bivalves from the Wrangellian, Peninsular, and Alexander terranes. In: Stevens CH (ed) Pre-Jurassic Rocks in Western North American suspect terranes. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los AngelesGoogle Scholar
  87. Newton CR (1987) Biogeographic complexity in Triassic bivalves of the Wallowa terrane, northwestern United States: Oceanic islands, not continents, provide the best analogues. Geology 15:1126–1129CrossRefGoogle Scholar
  88. Newton CR (1988) Significance of “Tethyan” fossils in the American Cordillera. Science 242:385–391CrossRefGoogle Scholar
  89. Niu Y, Jiang B, Huang H (2011) Triassic marine biogeography constrains the palaeogeographic reconstruction of Tibet and adjacent areas. Palaeogeogr Palaeoclimatol Palaeoecol 306:160–175CrossRefGoogle Scholar
  90. O’Foighil D (1989) Planktotrophic larval development is associated with a restricted geographic range in Lasaea, a genus of brooding, hermaphroditic bivalves. Mar Biol 103:349–358CrossRefGoogle Scholar
  91. Oschmann W (1993) Environmental fluctuations and the adaptive response of marine benthic organisms. J Geol Soc 150:187–191CrossRefGoogle Scholar
  92. Palmer CP (1989) Larval shells of four Jurassic bivalve molluscs. Bull Brit Mus Nat Hist Geol 45:57–69Google Scholar
  93. Raby D, Laagdeuc Y, Dodson JJ, Mingelbier M (1994) Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Mar Ecol Progr Ser 103:275–284CrossRefGoogle Scholar
  94. Rey J, Andreo B, García-Hernández M, Martín-Algarra A, Vera JA (1990) The Liassic “Lithiotis” facies north of Vélez Rubio (Subbetic Zone). Rev Soc Geol España 3:199–212Google Scholar
  95. Roy K, Jablonski D, Martien KK (2000) Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proc Nation Acad Sci USA 97:13150–13155CrossRefGoogle Scholar
  96. Runnegar B (1975) Late Palaeozoic Bivalvia from South America: provincial affinities and age. An Acad Brasil Sci [1972] 44 (suppl):295–312Google Scholar
  97. Runnegar B, Newell ND (1971) Caspian-like relict molluscan fauna in the South American Permian. Bull Am Mus Nat Hist 146:1–66Google Scholar
  98. Sánchez MT, Babin C (2001) Paleogeographic distribution of Ordovician molluscan bivalves. In: International conference Paleobiogeogr Paleoecol, p 117Google Scholar
  99. Savazzi E (1996) Preserved ligament in the Jurassic Lithiotis: apaptive and evolutionary significance. Palaeogeogr Palaeoclimatol Palaeoecol 120:281–289CrossRefGoogle Scholar
  100. Schatz W (2005) Palaeoecology of the Triassic black shale bivalve Daonella–new insights into an old controversy. Palaeogeogr Palaeoclimatol Palaeoecol 216:189–201CrossRefGoogle Scholar
  101. Scheltema RS (1977) Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In: Kauffman EG, Hazel JE (eds) Concepts and methods in biostratigraphy. Hutchinson and Ross, Stroudsburg, PAGoogle Scholar
  102. Scheltema RS (1988) Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the East Pacific barrier. Biol Bull 174:145–152CrossRefGoogle Scholar
  103. Scheltema RS, Williams IP (1983) Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and Western Pacific mollusks. Bull Mar Sci 33:545–565Google Scholar
  104. Scotese CR (1997) Paleogeographic Atlas. PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Arlington, Arlington, TexasGoogle Scholar
  105. Sha J (1996) Antitropicality of the Mesozoic Bivalves. In: Pang ZH et al (eds) Advances in Solid Earth Sciences. Science Press, PekingGoogle Scholar
  106. Sha J (2002) Hispanic corridor formed as early as Hettangian: on the basis of bivalve fossils. Chin Sci Bull 47:414–417CrossRefGoogle Scholar
  107. Shi GR, Grunt TA (2000) Permian Gondwana-Boreal antitropicality with special reference to brachiopod faunas. Palaeogeogr Palaeoclimatol Palaeoecol 155:239–263CrossRefGoogle Scholar
  108. Shurygin BN (2005) Biogeografiya, fatsii i stratigrafiya nizhnej i srednej Yury Sibiri po dvustvorchatym mollyuskan [Lower and Middle Jurassic biogeography, facies and stratigraphy in Siberia based on bivalve mollusks]. Trofimuk United Institute of Geology, Geophysics and Mineralogy; Institute of Petroleum Geology. Academic Publishing House “Geo”, pp 156 NovosibirskGoogle Scholar
  109. Silberling NJ (1985) Biogeographic significance of the Upper Triassic bivalve Monotis in Circum-Pacific Accreted Terranes. In: Howell DG (ed) Tectonostratigraphic Terranes of the Circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series 1:63–70Google Scholar
  110. Silberling NJ, Grant-Mackie JA, Nichols KM (1997) The Late Triassic Bivalve Monotis in Accreted Terranes of Alaska. US Geol Surv Bull 2151:1–21Google Scholar
  111. Skelton PW, Wright VP (1987) A Caribbean rudist bivalve in Oman: island-hopping across the Pacific in the Late Cretaceous. Palaeontology 30:505–529Google Scholar
  112. Skwarko SK (1983) Somareoides hastatus (Skwarko), a new Late Triassic bivalve from Papua New Guinea. Bull Bur Min Res Geol Geophy-s 217:67–68Google Scholar
  113. Smith AG, Briden JC (1977) Mesozoic and Cenozoic paleocontinental maps. Cambridge University Press, CambridgeGoogle Scholar
  114. Smith PL, Westermann GEG, Stanley GD Jr, Yancey TE Jr (1990) Paleobiogeography of the Ancient Pacific (response by Newton CR). Science 249:680–683CrossRefGoogle Scholar
  115. Speden IG, Keyes IW (1981) Illustrations of New Zealand Fossils. New Zealand Department of Scientific and Industrial Research, DSIR Information Series, Wellington, 150Google Scholar
  116. Stanley SM (1972) Functional morphology and evolution of byssally attached bivalve mollusks. J Paleontol 46(2):165–212Google Scholar
  117. Stevens GR (1967) Upper Jurassic fossils from Ellsworth Land, West Antarctica, and notes on Upper Jurassic biogeography of the South Pacific region. N Z J Geol Geophys 10:345–393CrossRefGoogle Scholar
  118. Stevens GR (1977) Mesozoic biogeography of the South-West Pacific and its relationship to plate tectonics. In: International Symposium on the Geodynamics of the SW Pacific. Ed. Technip, ParisGoogle Scholar
  119. Stevens GR (1980) Southwest Pacific faunal palaeobiogeography in Mesozoic and Cenozoic times: a review. Palaeogeogr Palaeoclimatol Palaeoecol 31:153–196CrossRefGoogle Scholar
  120. Tamura M (1990) The distribution of Japanese Triassic bivalve funas with special reference to parallel distribution of inner arcto-Pacific fauna and outer Tethyan fauna in Upper Triassic. In: Ichikawa K, Mizutani S, Hara I, Hara S, Yao A (eds) Pre-Cretaceous terranes of Japan. Publ IGCP Project 224:347–359Google Scholar
  121. Tanoue K (2003) Larval ecology of Cretaceous inoceramid bivalves from northwestern Hokkaido, Japan. Paleontol Res 7:105–110CrossRefGoogle Scholar
  122. Tausch von Gloeckelsthurn L (1890) Zur Kenntniss der Fauna der “grauen Kalke” der Süd-Alpen. Abhandl k.k. Geolog Reichs 15(2):1–42Google Scholar
  123. Voigt S, Hay WW, Höfling R, De Conte RM (1999) Biogeographic distribution of late Early to Late Cretaceous rudist-reefs in the Mediterranean as climate indicators. Geol Soc Am Spec Pap 332:91–103Google Scholar
  124. Wignall PB (1990) Observations on the evolution and classification of dysaerobic communities. In: Miller W (ed) Paleocommunity temporal dynamics: the long-term development of multispecies assemblies. Paleontol Soc Spec Publ 5:99–111Google Scholar
  125. Wignall PB, Simms MJ (1990) Pseudoplankton. Palaeontol 33:359–378Google Scholar
  126. Zinsmeister WJ (1979) Biogeographic Significance of the late Mesozoic and early Tertiary Molluscan Faunas of Seymour Island (Antarctic Peninsula) to the final breakup of Gondwanaland. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics, and the changing environment. Oregon State University Press, OregonGoogle Scholar
  127. Zinsmeister WJ (1982) Late Cretaceous-early Tertiary molluscan biogeography of the southern circum-Pacific. J Paleontol 56:84–102Google Scholar

Copyright information

© The Author(s) 2013

Authors and Affiliations

  • Susana E. Damborenea
    • 1
    Email author
  • Javier Echevarría
    • 1
  • Sonia Ros-Franch
    • 1
  1. 1.Departamento Paleontología InvertebradosMuseo de Ciencias Naturales La PlataLa PlataArgentina

Personalised recommendations