Skip to main content

The Role of Ion Channels in Cellular Mechanotransduction of Hydrostatic Pressure

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

  • 858 Accesses

Abstract

While pressure is a common mechanical parameter in the physiology of many organ systems, such as the vasculature, lungs, eyes, bladder, bone marrow, and brain, the conventional view that cells can only detect the deformation of physical structures has deterred further investigation of the effect of pressure itself. This is due to the long-lasting assumption that cells are incompressible so that they do not deform under hydrostatic pressure and cannot detect this physical quantity. The results of well-controlled studies, however, warrant careful reevaluation of this concept. Studies reviewed herein suggest that multiple mammalian cell types are sensitive to pure hydrostatic pressure within normal physiological ranges, and the signals may be mediated by activities of membrane-bound ion channels and transporters. Pressure changes as small as 0.5 cm H2O (50 Pa) have been shown to modulate potassium currents in vestibular type II hair cells from guinea pig utricles (Duwel et al. 2003), despite the fact that this is equivalent to less than a 4 m change in altitude near sea level. How such a small change in pressure can affect certain cell types while apparently having little effect on others remains an open question. Investigations of these phenomena are continuing to improve our understanding of pressure mechanotransduction and are critical to potentially treating pathophysiological pressure-related conditions in multiple organ systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol-Renal Physiol 282:F179-F190

    PubMed  Google Scholar 

  • Apodaca G, Balestreire E, Birder LA (2007) The Uroepithelial-associated sensory web. Kidney Int 72:1057–1064

    Article  PubMed  CAS  Google Scholar 

  • Araki I, Du S, Kobayashi H, Sawada N, Mochizuki T, Zakoji H, Takeda M (2008) Roles of mechanosensitive ion channels in bladder sensory transduction and overactive bladder. Int J Urol 15:681–687

    Article  PubMed  Google Scholar 

  • Arnold S, Vargas SL, Toma I, Hanner F, Willecke K, Janos PP (2009) Connexin 30 deficiency impairs renal tubular ATP release and pressure natriuresis. J Am Soc Nephrol 20:1724–1732

    Article  Google Scholar 

  • Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol-Renal Physiol 289:F489-F495

    Article  PubMed  CAS  Google Scholar 

  • Bohmer A, Dillier N (1990) Experimental endolymphatic hydrops: are cochlear and vestibular symptoms caused by increased endolymphatic pressure? Ann Otol Rhinol Laryngol 99:470–476

    PubMed  CAS  Google Scholar 

  • Bravim F, de Freitas JM, Fernandes AAR, Fernandes PMB (2010) High hydrostatic pressure and the cell membrane Stress response of Saccharomyces cerevisiae. AnnNY AcadSci 1189:127–132

    Article  CAS  Google Scholar 

  • Browning JA, Walker RE, Hall AC, Wilkins RJ (1999) Modulation of Na+ x H+ exchange by hydrostatic pressure in isolated bovine articular chondrocytes. Acta Physiol Scand 166:39–45

    Article  PubMed  CAS  Google Scholar 

  • Browning JA, Saunders K, Urban JPG, Wilkins RJ (2004) The influence and interactions of hydrostatic and osmotic pressures on the intracellular milieu of chondrocytes. Biorheology 41:299–308

    PubMed  CAS  Google Scholar 

  • Chen JH, Liu C, You LD, Simmons CA (2010) Boning up on Wolff’s Law: Mechanical regulation of the cells that make and maintain bone. J Biomech 43:108–118

    Article  PubMed  Google Scholar 

  • Courteix D, Lespessailles E, Peres SL, Obert P, Germain P, Benhamou CL (1998) Effect of physical training on bone mineral density in prepubertal girls: A comparative study between impact-loading and non-impact-loading sports. Osteoporosis Int 8:152–158

    Article  CAS  Google Scholar 

  • de Groat WC (2004) The urothelium in overactive bladder: Passive bystander or active participant? Urology 64:7–11

    Article  PubMed  Google Scholar 

  • Downie JW, Armour JA (1992) Mechanoreceptor afferent activity compared with receptor field dimensions and pressure changes in feline urinary bladder. Can J Physiol Pharmacol 70:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Drumm MR, York B, D, Nagatomi J (2010) Effect of Sustained Hydrostatic Pressure on Rat Bladder Smooth Muscle Cell Function. Urology 75:879–885

    Article  PubMed  Google Scholar 

  • Düwel P, Jungling E, Westhofen M, Luckhoff A (2003) Potassium currents in vestibular type II hair cells activated by hydrostatic pressure. Neuroscience 116:963–972

    Article  PubMed  Google Scholar 

  • Düwel P, Haasler T, Jungling E, Duong TA, Westhofen M, Luckhoff A (2005) Effects of cinnarizine on calcium and pressure-dependent potassium currents in guinea pig vestibular hair cells. Naunyn-Schmiedebergs Arch Pharmacol 371:441–448

    Article  PubMed  Google Scholar 

  • Elder BD and Athanasiou KA (2009) Hydrostatic Pressure in Articular Cartilage Tissue Engineering: From Chondrocytes to Tissue Regeneration. Tissue Eng Part B-Rev 15:43–53

    Article  PubMed  CAS  Google Scholar 

  • Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B (2010) Functional characterization of transient receptor potential channels in mouse urothelial cells. AJP—Renal Physiology 298:F692–F701

    PubMed  CAS  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes—a possible sensory mechanism? J Physiol-London 505:503–511

    Article  PubMed  CAS  Google Scholar 

  • Folgering JHA, Sharif-Naeini R, Dedman A, Patel A, Delmas P, Honore E (2008) Molecular basis of the mammalian pressure-sensitive ion channels: Focus on vascular mechanotransduction. Progress in Biophysics and Molecular Biology 97:180–195

    Article  PubMed  CAS  Google Scholar 

  • Gomis A, Soriano S, Belmonte C, Viana F (2008) Hypoosmotic- and pressure-induced membrane stretch activate TRPC5 channels. J Physiol-London 586:5633–5649

    Article  PubMed  CAS  Google Scholar 

  • Grad S, Eglin D, Alini M, Stoddart MJ (2011) Physical stimulation of chondrogenic cells In Vitro: A Review. Clin Orthop Rel Res 469:2764–2772

    Article  Google Scholar 

  • Haasler T, Homann G, Dinh TAD, Jungling E, Westhofen M, Luckhoff A (2009) Pharmacological modulation of transmitter release by inhibition of pressure-dependent potassium currents in vestibular hair cells. Naunyn-Schmiedebergs Arch Pharmacol 380:531–538

    Article  PubMed  CAS  Google Scholar 

  • Haberstroh KM, Kaefer M, Retik AB, Freeman MR, Bizios R (1999) The effects of sustained hydrostatic-pressure on select bladder smooth muscle cell functions. J Urol 162:2114–2118

    Article  PubMed  CAS  Google Scholar 

  • Hall AC (1999) Differential effects of hydrostatic pressure on cation transport pathways of isolated articular chondrocytes. J Cell Physiol 178:197–204

    Article  PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81:685–740

    PubMed  CAS  Google Scholar 

  • Haskin C, Cameron I (1993) Physiological levels of hydrostatic pressure alter morphology and organization of cytoskeletal and adhesion proteins in MG-63 osteosarcoma cells. Biochem Cell Biol 71:27–35

    Article  PubMed  CAS  Google Scholar 

  • Hodge WA, Fijan RS, Carlson KL, Burgess RG, Harris WH, Mann RW (1986) Contact pressures in the human hip joint measured in vivo. Proc Natl Acad Sci U S A 83:2879–2883

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Haas C, Ghadiali SN (2010) Influence of Transmural Pressure and Cytoskeletal Structure on NF-kappa B Activation in Respiratory Epithelial Cells. Cell Mol Bioeng 3:415–427

    Article  PubMed  CAS  Google Scholar 

  • Iggo A (1955) Tension receptors in the stomach and the urinary bladder. The Journal of Physiology 128:593–607

    PubMed  CAS  Google Scholar 

  • Ishihara H, McNally DS, Urban JPG, Hall AC (1996) Effects of hydrostatic pressure on matrix synthesis in different regions of the intervertebral disk. J Appl Physiol 80:839–846

    PubMed  CAS  Google Scholar 

  • Kashlan OB, Kleyman TR (2011) ENaC structure and function in the wake of a resolved structure of a family member. Am J Physiol-Renal Physiol 301:F684-F696

    Article  PubMed  CAS  Google Scholar 

  • Kohler R, Distler A, Hoyer J (1998) Pressure-activated cation channel in intact rat endocardial endothelium. Cardiovasc Res 38:433–440

    Article  PubMed  CAS  Google Scholar 

  • Krolner B, Toft B, Nielsen SP, Tondevold E (1983) Physical exercise as prophylaxis against involutional vertebral bone loss: a controlled trial. Clin Sci 64:541–546

    PubMed  CAS  Google Scholar 

  • Kumar V, Abbas AK, Fausto N (2005) Robbins and cotran pathologic basis of disease. Seventh edition. Elsevier Saunders

    Google Scholar 

  • Kwon YH, Fingert JH, Kuehn MH, Alward WLM (2009) Mechanisms of Disease: Primary Open-Angle Glaucoma. N Engl J Med 360:1113–1124

    Article  PubMed  CAS  Google Scholar 

  • Leblanc AD, Schneider VS, Evans HJ, Engelbretson DA, Krebs JM (1990) Bone mineral loss and recovery after 17 weeks of bed rest. J Bone Miner Res 5:843–850

    Article  PubMed  CAS  Google Scholar 

  • Lei Y, Rajabi S, Pedrigi RM, Overby DR, Read AT, Ethier CR (2011) In Vitro Models for Glaucoma Research: Effects of Hydrostatic Pressure. Invest Ophthalmol Vis Sci 52:6329–6339

    Article  PubMed  Google Scholar 

  • Liu C, Zhao Y, Cheung WY, Gandhi R, Wang LY, You LD (2010) Effects of cyclic hydraulic pressure on osteocytes. Bone 46:1449–1456

    Article  PubMed  CAS  Google Scholar 

  • Macdonald AG (2002) Ion channels under high pressure. Comp Biochem Physiol A-Mol Integr Physiol 131:587–593

    Article  PubMed  CAS  Google Scholar 

  • Macdonald AG, Fraser PJ (1999) The transduction of very small hydrostatic pressures. Comp Biochem Physiol A-Mol Integr Physiol 122:13–36

    Article  PubMed  CAS  Google Scholar 

  • Mandal A, Shahidullah M, Delamere NA, Teran MA (2009) Elevated hydrostatic pressure activates sodium/hydrogen exchanger-1 in rat optic nerve head astrocytes. Am J Physiol-Cell Physiol 297:C111–C120

    Article  PubMed  CAS  Google Scholar 

  • Mandal A, Shahidullah M, Delamere NA (2010) Hydrostatic Pressure-Induced Release of Stored Calcium in Cultured Rat Optic Nerve Head Astrocytes. Invest Ophthalmol Vis Sci 51:3129–3138

    Article  PubMed  Google Scholar 

  • Mizuno S (2005) A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes. Am J Physiol-Cell Physiol 288:C329–C337

    Article  PubMed  CAS  Google Scholar 

  • Morrison J (1999) The activation of bladder wall afferent nerves. Exp Physiol 84:131–136

    PubMed  CAS  Google Scholar 

  • Moss NG, Harrington WW, Tucker MS (1997) Pressure, volume, and chemosensitivity in afferent innervation of urinary bladder in rats. Am J Physiol-Regul Integr Comp Physiol 272:R695-R703

    CAS  Google Scholar 

  • Myers KA, Rattner JB, Shrive NG, Hart DA (2007) Hydrostatic pressure sensation in cells: integration into the tensegrity model. Biochem Cell Biol 85:543–551

    Article  PubMed  CAS  Google Scholar 

  • Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R (2001) Frequency- and duration-dependent effects of cyclic pressure on select bone cell functions. Tissue Eng 7:717–728

    Article  PubMed  CAS  Google Scholar 

  • Nagatomi J, Arulanandam BP, Metzger DW, Meunier A, Bizios R (2002) Effects of cyclic pressure on bone marrow cell cultures. J Biomech Eng-Trans ASME 124:308–314

    Article  Google Scholar 

  • Nagatomi J, Arulanandam BR, Metzger DW, Meunier A, Bizios R (2003) Cyclic pressure affects osteoblast functions pertinent to osteogenesis. Ann Biomed Eng 31:917–923

    Article  PubMed  Google Scholar 

  • Nagatomi J, Wu YN, Gray M (2009) Proteomic analysis of bladder smooth muscle cell response to cyclic hydrostatic pressure. Cell Mol Bioeng 2:166–173

    Article  CAS  Google Scholar 

  • Ohashi T, Sugaya Y, Sakamoto N, Sato M (2007) Hydrostatic pressure influences morphology and expression of VE-cadherin of vascular endothelial cells. J Biomech 40:2399–2405

    Article  PubMed  Google Scholar 

  • Olsen SM, Stover JD, Nagatomi J (2011) Examining the role of mechanosensitive ion channels in pressure mechanotransduction in rat bladder urothelial cells. Ann Biomed Eng 39:688–697

    Article  PubMed  Google Scholar 

  • Rauch C, Pluen A, Foster N, Loughna P, Mobasheri A, Lagadic-Gossmann D, Counillon L (2010) On some aspects of the thermodynamic of membrane recycling mediated by fluid phase endocytosis: Evaluation of published data and perspectives. Cell Biochem Biophys 56:73–90

    Article  PubMed  CAS  Google Scholar 

  • Sappington RM, Calkins DJ (2008) Contribution of TRPV1 to microglia-derived IL-6 and NF kappa B translocation with elevated hydrostatic pressure. Invest Ophthalmol Vis Sci 49:3004–3017

    Article  PubMed  Google Scholar 

  • Sappington RM, Sidorova T, Long DJ, Calkins DJ (2009) TRPV1: Contribution to Retinal Ganglion Cell Apoptosis and Increased Intracellular Ca2 + with Exposure to Hydrostatic Pressure. Invest Ophthalmol Vis Sci 50:717–728

    Article  PubMed  Google Scholar 

  • Shea VK, Cai R, Crepps B, Mason JL, Perl ER (2000) Sensory fibers of the pelvic nerve innervating the rat’s urinary bladder. J Neurophysiol 84:1924–1933

    PubMed  CAS  Google Scholar 

  • Shung KK, Krisko BA, Ballard JO (1982) Acoustic measurement of erythrocyte compressibility. J Acoust Soc Am 72:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Stover J, Nagatomi J (2007) Cyclic pressure stimulates DNA synthesis through the PI3 K/Akt signaling pathway in rat bladder smooth muscle cells. Ann Biomed Eng 35:1585–1594

    Article  PubMed  Google Scholar 

  • Venkatachalam K, Montell C (2007) TRP channels. Annu Rev Biochem 76:387–417

    Article  PubMed  CAS  Google Scholar 

  • Wang ECY, Lee JM, Ruiz WG, Balestreire EM, von Bodungen M, Barrick S, Cockayne DA, Birder LA, Apodaca G (2005) ATP and purinergic receptor-dependent membrane traffic in bladder umbrella cells. J Clin Invest 115:2412–2422

    Article  PubMed  CAS  Google Scholar 

  • Williams EE, Stewart BS, Beuchat CA, Somero GN, Hazel JR (2001) Hydrostatic-pressure and temperature effects on the molecular order of erythrocyte membranes from deep-, shallow-, and non-diving mammals. Can J Zool-Rev Can Zool 79:888–894

    Article  CAS  Google Scholar 

  • Wilson RG, Trogadis JE, Zimmerman S, Zimmerman AM (2001) Hydrostatic pressure induced changes in the cytoarchitecture of pheochromocytoma (PC-12) cells. Cell Biol Int 25:649–666

    Article  PubMed  Google Scholar 

  • Winter R, Lopes D, Grudzielanek S, Vogtt K (2007) Towards an understanding of the temperature/pressure configurational and free-energy landscape of biomolecules. J Non-Equilib Thermodyn 32:41–97

    Article  CAS  Google Scholar 

  • Yoshimura N, Kaiho Y, Miyazato M, Yunoki T, Tai CF, Chancellor MB, Tyagi P (2008) Therapeutic receptor targets for lower urinary tract dysfunction. Springer 437–448

    Google Scholar 

  • Yu WQ, Khandelwal P, Apodaca G (2009) Distinct apical and basolateral membrane requirements for stretch-induced membrane traffic at the apical surface of bladder umbrella cells. Mol Biol Cell 20:282–295

    Article  PubMed  CAS  Google Scholar 

  • Zagorodnyuk VP, Costa M, Brookes SJH (2006) Major classes of sensory neurons to the urinary bladder. Auton Neurosci-Basic Clin 126:390–397

    Article  Google Scholar 

  • Zerwekh JE, Ruml LA, Gottschalk F, Pak CYC (1998) The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects. J Bone Miner Res 13:1594–1601

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiro Nagatomi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Champaigne, K.D., Nagatomi, J. (2012). The Role of Ion Channels in Cellular Mechanotransduction of Hydrostatic Pressure. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_9

Download citation

Publish with us

Policies and ethics