Skip to main content

The Molecular Mechanism of Multifunctional Mechano-Gated Channel TRPV4

  • Chapter
  • First Online:
Book cover Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

  • 965 Accesses

Abstract

Transient receptor potential vanilloid 4 (TRPV4) is a member of the TRP family of channels. It contains 6 transmembrane domains and was first identified as a hypoosmolality-activated Ca2+ permeable channel. TRPV4 is functionally active in many tissues, including nerve, bone, lung, kidney and blood vessels. Hypoosmolality activates phospholipase A2 (PLA2), which produces eicosanoids indirectly that open TRPV4. TRPV4 is also a direct mechano-sensitive channel, and cytoskeleton proteins such as actin, tubulin and integrin bind to the channel, helping it to respond to mechanical stimuli. The channel is able to sense diverse physical stimuli, such as warmth, inflammation and fluid flow, and thus can be considered a multifunctional micro-machine. After TRPV4 activation, released for example ATP transmits a signal to nerve endings via purinergic receptors or initiates dynamic changes in the cytoskeleton to modify cell structure. TRPV4-null mice exhibit an almost normal appearance, but lack mechano-sensation in various tissues under variable stresses. Gain-of-function mutations in the channel, in humans, lead to skeletal limb deformities and neuromuscular dysplasia with sensory abnormalities. Loss of function mutations lead to late onset hyponatremia or peripheral arthropathy. A thorough understanding of the molecular mechanisms of TRPV4 function will provide insight into how disruptions in mechanical signal transduction cause disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abed E, Labelle D, Martineau C, Loghin A, Moreau R (2009) Expression of transient receptor potential (TRP) channels in human and murine osteoblast-like cells. Mol Membr Biol 26:146–158

    PubMed  CAS  Google Scholar 

  • Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK (2011) PKC{alpha} mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301:H757–765

    Google Scholar 

  • Agam K, von Campenhausen M, Levy S, Ben-Ami HC, Cook B, Kirschfeld K, Minke B (2000) Metabolic stress reversibly activates the Drosophila light-sensitive channels TRP and TRPL in vivo. J Neurosci 20:5748–55

    PubMed  CAS  Google Scholar 

  • Ahmed MK, Takumida M, Ishibashi T, Hamamoto T, Hirakawa K (2009) Expression of transient receptor potential vanilloid (TRPV) families 1, 2, 3 and 4 in the mouse olfactory epithelium. Rhinology 47:242–247

    PubMed  Google Scholar 

  • Akopian AN, Ruparel NB, Jeske NA, Patwardhan A, Hargreaves KM (2009) Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia. Trends Pharmacol Sci 30:79–84

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Yeh JJ, Boyd AE, Parada CA, Chen X, Reichling DB, Levine JD (2003) Hypotonicity induces TRPV4-mediated nociception in rat. Neuron 39:497–511

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Yeh JJ, Parada CA, Reichling DB, Levine JD (2004) Transient receptor potential vanilloid 4 is essential in chemotherapy-induced neuropathic pain in the rat. J Neurosci 24:4444–4452

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Joseph E, Dina OA, Liedtke W, Levine JD (2005) TRPV4 mediates pain-related behavior induced by mild hypertonic stimuli in the presence of inflammatory mediator. Pain 118:70–79

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling D, Levine JD (2006) A transient receptor potential vanilloid 4-dependent mechanism of hyperalgesia is engaged by concerted action of inflammatory mediators. J Neurosci 26:3864–3874

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Joseph EK, Reichling DB, Levine JD (2008) Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia. J Neurosci 28:1046–1057

    PubMed  CAS  Google Scholar 

  • Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228

    PubMed  CAS  Google Scholar 

  • Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995

    PubMed  CAS  Google Scholar 

  • Amato V, Vina E, Calavia MG, Guerrera MC, Laura R, Navarro M, De Carlos F, Cobo J, Germana A, Vega JA (2011) TRPV4 in the sensory organs of adult zebrafish. Microsc Res Tech: 2011 Jun 15. doi: 10.1002/jemt.21029

    Google Scholar 

  • Andersson KE, Gratzke C, Hedlund P (2010) The role of the transient receptor potential (TRP) superfamily of cation-selective channels in the management of the overactive bladder. BJU Int 106:1114–1127

    PubMed  CAS  Google Scholar 

  • Andrade YN, Fernandes J, Vazquez E, Fernandez-Fernandez JM, Arniges M, Sanchez TM, Villalon M, Valverde MA (2005) TRPV4 channel is involved in the coupling of fluid viscosity changes to epithelial ciliary activity. J Cell Biol 168:869–874

    PubMed  CAS  Google Scholar 

  • Andrade YN, Fernandes J, Lorenzo IM, Arniges M, Valverde MA (2007) The TRPV4 Channel in Ciliated Epithelia

    Google Scholar 

  • Andreucci E, Aftimos S, Alcausin M, Haan E, Hunter W, Kannu P, Kerr B, McGillivray G, Gardner RJ, Patricelli MG, Sillence D, Thompson E, Zacharin M, Zankl A, Lamande SR, Savarirayan R (2011) TRPV4 related skeletal dysplasias: a phenotypic spectrum highlighted by clinical, radiographic, and molecular studies in 21 new families. Orphanet J Rare Dis 6:37

    PubMed  Google Scholar 

  • Armando I, Jose PA (2009) Sensing salt intake. Hypertension 53:118–119

    PubMed  CAS  Google Scholar 

  • Arniges M, Vazquez E, Fernandez-Fernandez JM, Valverde MA (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279:54062–54068

    PubMed  CAS  Google Scholar 

  • Arniges M, Fernandez-Fernandez JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586

    PubMed  CAS  Google Scholar 

  • Asai Y, Holt JR, Geleoc GS (2010) A quantitative analysis of the spatiotemporal pattern of transient receptor potential gene expression in the developing mouse cochlea. J Assoc Res Otolaryngol 11:27–37

    PubMed  Google Scholar 

  • Auer-Grumbach M, Olschewski A, Papic L, Kremer H, McEntagart ME, Uhrig S, Fischer C, Frohlich E, Balint Z, Tang B, Strohmaier H, Lochmuller H, Schlotter-Weigel B, Senderek J, Krebs A, Dick KJ, Petty R, Longman C, Anderson NE, Padberg GW, Schelhaas HJ, van Ravenswaaij-Arts CM, Pieber TR, Crosby AH, Guelly C (2010) Alterations in the ankyrin domain of TRPV4 cause congenital distal SMA, scapuloperoneal SMA and HMSN2C. Nat Genet 42:160–164

    PubMed  CAS  Google Scholar 

  • Auge C, Balz-Hara D, Steinhoff M, Vergnolle N, Cenac N (2009) Protease-activated receptor-4 (PAR 4): a role as inhibitor of visceral pain and hypersensitivity. Neurogastroenterol Motil 21:1189-e1107

    PubMed  CAS  Google Scholar 

  • Aure MH , Roed A, Galtung HK (2010) Intracellular C2+ responses and cell volume regulation upon cholinergic and purinergic stimulation in an immortalized salivary cell line. Eur J Oral Sci 118:237–244

    PubMed  CAS  Google Scholar 

  • Bai JZ, Lipski J (2010) Differential expression of TRPM2 and TRPV4 channels and their potential role in oxidative stress-induced cell death in organotypic hippocampal culture. Neurotoxicology 31:204–214

    PubMed  CAS  Google Scholar 

  • Basavappa S, Pedersen SF, Jørgensen NK, Ellory JC, Hoffmann EK (1998) Swelling-induced arachidonic acid release via the 85-kDa cPLA2 in human neuroblastoma cells. J Neurophysiol 79:1441–1449

    PubMed  CAS  Google Scholar 

  • Becker D, Blase C, Bereiter-Hahn J, Jendrach M (2005) TRPV4 exhibits a functional role in cell-volume regulation. J Cell Sci 118:2435–2440

    PubMed  CAS  Google Scholar 

  • Becker D, Muller M, Leuner K, Jendrach M (2008) The C-terminal domain of TRPV4 is essential for plasma membrane localization. Mol Membr Biol 25:139–151

    PubMed  CAS  Google Scholar 

  • Becker D, Bereiter-Hahn J, Jendrach M (2009) Functional interaction of the cation channel transient receptor potential vanilloid 4 (TRPV4) and actin in volume regulation. Eur J Cell Biol 88:141–152

    PubMed  CAS  Google Scholar 

  • Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    PubMed  CAS  Google Scholar 

  • Benfenati V, Caprini M, Dovizio M, Mylonakou MN, Ferroni S, Ottersen OP, Amiry-Moghaddam M (2011) An aquaporin-4/transient receptor potential vanilloid 4 (AQP4/TRPV4) complex is essential for cell-volume control in astrocytes. Proc Natl Acad Sci USA 108:2563–2568

    PubMed  CAS  Google Scholar 

  • Berciano J, Baets J, Gallardo E, Zimon M, Garcia A, Lopez-Laso E, Combarros O, Infante J, Timmerman V, Jordanova A, De Jonghe P (2011) Reduced penetrance in hereditary motor neuropathy caused by TRPV4 Arg269Cys mutation. J Neurol 258:1413–1421

    PubMed  Google Scholar 

  • Bhargave G, Woodworth BA, Xiong G, Wolfe SG, Antunes MB, Cohen NA (2008) Transient receptor potential vanilloid type 4 channel expression in chronic rhinosinusitis. Am J Rhinol 22:7–12

    PubMed  Google Scholar 

  • Birder LA (2005) More than just a barrier: urothelium as a drug target for urinary bladder pain. Am J Physiol Renal Physiol 289:F489–495

    Google Scholar 

  • Birder LA, Nakamura Y, Kiss S, Nealen ML, Barrick S, Kanai AJ, Wang E, Ruiz G, De Groat WC, Apodaca G, Watkins S, Caterina MJ (2002) Altered urinary bladder function in mice lacking the vanilloid receptor TRPV1. Nat Neurosci 5:856–860

    PubMed  CAS  Google Scholar 

  • Birder L, Kullmann FA, Lee H, Barrick S, de Groat W, Kanai A, Caterina M (2007) Activation of urothelial transient receptor potential vanilloid 4 by 4alpha-phorbol 12,13-didecanoate contributes to altered bladder reflexes in the rat. J Pharmacol Exp Ther 323:227–235

    PubMed  CAS  Google Scholar 

  • Brauchi S, Orta G, Salazar M, Rosenmann E, Latorre R (2006) A hot-sensing cold receptor: C-terminal domain determines thermosensation in transient receptor potential channels. J Neurosci 26:4835–4840

    PubMed  CAS  Google Scholar 

  • Brinkmeier H (2011) TRP channels in skeletal muscle: gene expression, function and implications for disease. Adv Exp Med Biol 704:749–758

    PubMed  CAS  Google Scholar 

  • Boudes M, Uvin P, De Ridder D (2011) TRPV4, new therapeutic target for urinary problems. Med Sci (Paris) 27:232–234

    Google Scholar 

  • Boulais N, Pennec JP, Lebonvallet N, Pereira U, Rougier N, Dorange G, Chesne C, Misery L (2009) Rat Merkel cells are mechanoreceptors and osmoreceptors. PLoS One 4:e7759

    Google Scholar 

  • Boulais N, Pereira U, Lebonvallet N, Gobin E, Dorange G, Rougier N, Chesne C, Misery L (2009) Merkel cells as putative regulatory cells in skin disorders: an in vitro study. PLoS One 4:e6528

    Google Scholar 

  • Bourque CW, Ciura S, Trudel E, Stachniak TJ, Sharif-Naeini R (2007) Neurophysiological characterization of mammalian osmosensitive neurones. Exp Physiol 92:499–505

    PubMed  CAS  Google Scholar 

  • Bradesi S (2009) PAR4: a new role in the modulation of visceral nociception. Neurogastroenterol Motil 21:1129–1132

    PubMed  CAS  Google Scholar 

  • Brayden JE, Earley S, Nelson MT, Reading S (2008) Transient receptor potential (TRP) channels, vascular tone and autoregulation of cerebral blood flow. Clin Exp Pharmacol Physiol 35:1116–1120

    PubMed  CAS  Google Scholar 

  • Brierley SM, Page AJ, Hughes PA, Adam B, Liebregts T, Cooper NJ, Holtmann G, Liedtke W, Blackshaw LA (2008) Selective role for TRPV4 ion channels in Brayden sensory pathways. Gastroenterology 134:2059–2069

    PubMed  CAS  Google Scholar 

  • Camacho N, Krakow D, Johnykutty S, Katzman PJ, Pepkowitz S, Vriens J, Nilius B, Boyce BF, Cohn DH (2010) Dominant TRPV4 mutations in nonlethal and lethal metatropic dysplasia. Am J Med Genet A 152A:1169–1177

    Google Scholar 

  • Cameron TL, Belluoccio D, Farlie PG, Brachvogel B, Bateman JF (2009) Global comparative transcriptome analysis of cartilage formation in vivo. BMC Dev Biol 9:20

    PubMed  Google Scholar 

  • Cantero-Recasens G, Gonzalez JR, Fandos C, Duran-Tauleria E, Smit LA, Kauffmann F, Anto JM, Valverde MA (2010) Loss of function of transient receptor potential vanilloid 1 (TRPV1) genetic variant is associated with lower risk of active childhood asthma. J Biol Chem 285:27532–27535

    PubMed  CAS  Google Scholar 

  • Cao DS, Yu SQ, Premkumar LS (2009) Modulation of transient receptor potential Vanilloid 4-mediated membrane currents and synaptic transmission by protein kinase C. Mol Pain 5:5

    PubMed  Google Scholar 

  • Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D (1997) The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–824

    PubMed  CAS  Google Scholar 

  • Caterina MJ, Rosen TA, Tominaga M, Brake AJ, Julius D (1999) A capsaicin-receptor homologue with a high threshold for noxious heat. Nature 398:436–441

    PubMed  CAS  Google Scholar 

  • Carreno FR, Ji LL, Cunningham JT (2009) Altered central TRPV4 expression and lipid raft association related to inappropriate vasopressin secretion in cirrhotic rats. Am J Physiol Regul Integr Comp Physiol 296:R454–466

    Google Scholar 

  • Casas S, Novials A, Reimann F, Gomis R, Gribble FM (2008) Calcium elevation in mouse pancreatic beta cells evoked by extracellular human islet amyloid polypeptide involves activation of the mechanosensitive ion channel TRPV4. Diabetologia 51:2252–2262

    PubMed  CAS  Google Scholar 

  • Cenac N, Altier C, Chapman K, Liedtke W, Zamponi G, Vergnolle N (2008) Transient receptor potential vanilloid-4 has a major role in visceral hypersensitivity symptoms. Gastroenterology 135:937–946, 946 e931–932

    PubMed  CAS  Google Scholar 

  • Cenac N, Altier C, Motta JP, d’Aldebert E, Galeano S, Zamponi GW, Vergnolle N (2010) Potentiation of TRPV4 signalling by histamine and serotonin: an important mechanism for visceral hypersensitivity. Gut 59:481–488

    PubMed  CAS  Google Scholar 

  • Ceppa E, Cattaruzza F, Lyo V, Amadesi S, Pelayo JC, Poole DP, Vaksman N, Liedtke W, Cohen DM, Grady EF, Bunnett NW, Kirkwood KS Transient receptor potential ion channels V4 and A1 contribute to pancreatitis pain in mice (2010) Am J Physiol Gastrointest Liver Physiol 299:G556–571

    Google Scholar 

  • Chen X, Alessandri-Haber N, Levine JD (2007) Marked attenuation of inflammatory mediator-induced C-fiber sensitization for mechanical and hypotonic stimuli in TRPV4-/- mice. Mol Pain 3:31

    PubMed  Google Scholar 

  • Chen L, Liu C, Liu L (2008) Changes in osmolality modulate voltage-gated calcium channels in trigeminal ganglion neurons. Brain Res 1208:56–66

    CAS  Google Scholar 

  • Chen L, Liu C, Liu L (2009a) Osmolality-induced tuning of action potentials in trigeminal ganglion neurons. Neurosci Lett 452:79–83

    CAS  Google Scholar 

  • Chen L, Liu C, Liu L, Cao X (2009b) Changes in osmolality modulate voltage-gated sodium channels in trigeminal ganglion neurons. Neurosci Res 64:199–207

    CAS  Google Scholar 

  • Chen DH, Sul Y, Weiss M, Hillel A, Lipe H, Wolff J, Matsushita M, Raskind W, Bird T (2010) CMT2C with vocal cord paresis associated with short stature and mutations in the TRPV4 gene. Neurology 75:1968–1975

    PubMed  Google Scholar 

  • Chuang HH, Lin S (2009) Oxidative challenges sensitize the capsaicin receptor by covalent cysteine modification. Proc Natl Acad Sci USA 106:20097–20102

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Caterina MJ (2003) Warm temperatures activate TRPV4 in mouse 308 keratinocytes. J Biol Chem 278:32037–32046

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) 2-aminoethoxydiphenyl borate activates and sensitizes the heat-gated ion channel TRPV3. J Neurosci 24:5177–5182

    PubMed  CAS  Google Scholar 

  • Chung MK, Lee H, Mizuno A, Suzuki M, Caterina MJ (2004) TRPV3 and TRPV4 mediate warmth-evoked currents in primary mouse keratinocytes. J Biol Chem 279:21569–21575

    PubMed  CAS  Google Scholar 

  • Ciura S, Bourque CW (2006) Transient receptor potential vanilloid 1 is required for intrinsic osmoreception in organum vasculosum lamina terminalis neurons and for normal thirst responses to systemic hyperosmolality. J Neurosci 26:9069–75

    PubMed  CAS  Google Scholar 

  • Ciura S, Liedtke W, Bourque CW (2011) Hypertonicity Sensing in Organum Vasculosum Lamina Terminalis Neurons: A Mechanical Process Involving TRPV1 But Not TRPV4. J Neurosci 31:14669–14676

    PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C (2001) The trp ion channel family. Nat Rev Neurosci 2:387–396

    PubMed  CAS  Google Scholar 

  • Clark AL, Votta BJ, Kumar S, Liedtke W, Guilak F (2010) Chondroprotective role of the osmotically sensitive ion channel transient receptor potential vanilloid 4: age- and sex-dependent progression of osteoarthritis in Trpv4-deficient mice. Arthritis Rheum 62:2973–2983

    PubMed  CAS  Google Scholar 

  • Cohen DM (2007a) The Role of TRPV4 in the Kidney. In: Liedtke WB, Heller S (eds) TRP ion channel function in sensory transduction and cellular signaling cascades. Boca Raton (FL): CRC Press; Chapter 29

    Google Scholar 

  • Cohen DM (2007b) The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology. Curr Opin Nephrol Hypertens 16:451–458

    PubMed  CAS  Google Scholar 

  • Colbert HA, Smith TL, Bargmann CI (1997) OSM-9, a novel protein with structural similarity to channels, is required for olfaction, mechanosensation, and olfactory adaptation in Caenorhabditis elegans. J Neurosci 17:8259–8269

    PubMed  CAS  Google Scholar 

  • Combrisson H, Allix S, Robain G (2007) Influence of temperature on urethra to bladder micturition reflex in the awake ewe. Neurourol Urodyn 26:290–295

    PubMed  Google Scholar 

  • Corey DP (2006) What is the hair cell transduction channel?. J Physiol 576:23–28

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Grimm C, Oshima K, D’Hoedt D, Nilius B, Mensenkamp AR, Bindels RJ, Plomann M, Heller S (2006) PACSINs bind to the TRPV4 cation channel. PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762

    PubMed  CAS  Google Scholar 

  • Curry FR, Glass CA (2006) TRP channels and the regulation of vascular permeability: new insights from the lung microvasculature. Circ Res 99:915–917

    PubMed  CAS  Google Scholar 

  • Cuajungco MP, Grimm C, Heller S (2007) TRP channels as candidates for hearing and balance abnormalities in vertebrates. Biochim Biophys Acta 1772:1022–1027

    PubMed  CAS  Google Scholar 

  • Dai J, Cho TJ, Unger S, Lausch E, Nishimura G, Kim OH, Superti-Furga A, Ikegawa S (2010) TRPV4-pathy, a novel channelopathy affecting diverse systems. J Hum Genet 55:400–402

    PubMed  Google Scholar 

  • Dai J, Kim OH, Cho TJ, Schmidt-Rimpler M, Tonoki H, Takikawa K, Haga N, Miyoshi K, Kitoh H, Yoo WJ, Choi IH, Song HR, Jin DK, Kim HT, Kamasaki H, Bianchi P, Grigelioniene G, Nampoothiri S, Minagawa M, Miyagawa SI, Fukao T, Marcelis C, Jansweijer MC, Hennekam RC, Bedeschi F, Mustonen A, Jiang Q, Ohashi H, Furuichi T, Unger S, Zabel B, Lausch E, Superti-Furga A, Nishimura G, Ikegawa S (2010) Novel and recurrent TRPV4 mutations and their association with distinct phenotypes within the TRPV4 dysplasia family. J Med Genet 47:704–709

    PubMed  CAS  Google Scholar 

  • D’Aldebert E, Cenac N, Rousset P, Martin L, Rolland C, Chapman K, Selves J, Alric L, Vinel JP, Vergnolle N (2011) Transient receptor potential vanilloid 4 activated inflammatory signals by intestinal epithelial cells and colitis in mice. Gastroenterology 140:275–285

    PubMed  Google Scholar 

  • Delany NS, Hurle M, Facer P, Alnadaf T, Plumpton C, Kinghorn I, See CG, Costigan M, Anand P, Woolf CJ, Crowther D, Sanseau P, Tate SN (2001) Identification and characterization of a novel human vanilloid receptor-like protein, VRL-2. Physiol Genomics 4:165–174

    PubMed  CAS  Google Scholar 

  • Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659

    PubMed  CAS  Google Scholar 

  • Deng HX, Klein CJ, Yan J, Shi Y, Wu Y, Fecto F, Yau HJ, Yang Y, Zhai H, Siddique N, Hedley-Whyte ET, Delong R, Martina M, Dyck PJ, Siddique T (2010) Scapuloperoneal spinal muscular atrophy and CMT2C are allelic disorders caused by alterations in TRPV4. Nat Genet 42:165–169

    PubMed  CAS  Google Scholar 

  • Denker SP, Barber DL (2002) Ion transport proteins anchor and regulate the cytoskeleton. Curr Opin Cell Biol 14:214–220

    PubMed  CAS  Google Scholar 

  • D’Hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283:6272–6280

    PubMed  Google Scholar 

  • Ding XL, Wang YH, Ning LP, Zhang Y, Ge HY, Jiang H, Wang R, Yue SW (2010) Involvement of TRPV4-NO-cGMP-PKG pathways in the development of thermal hyperalgesia following chronic compression of the dorsal root ganglion in rats. Behav Brain Res 208:194–201

    PubMed  CAS  Google Scholar 

  • Donko A, Ruisanchez E, Orient A, Enyedi B, Kapui R, Peterfi Z, de Deken X, Benyo Z, Geiszt M (2010) Urothelial cells produce hydrogen peroxide through the activation of Duox1. Free Radic Biol Med 49:2040–2048

    PubMed  CAS  Google Scholar 

  • Ducret T, Guibert C, Marthan R, Savineau JP (2008) Serotonin-induced activation of TRPV4-like current in rat intrapulmonary arterial smooth muscle cells. Cell Calcium 43:315–323

    PubMed  CAS  Google Scholar 

  • Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279

    PubMed  CAS  Google Scholar 

  • Earley S, Pauyo T, Drapp R, Tavares MJ, Liedtke W, Brayden JE (2009) TRPV4-dependent dilation of peripheral resistance arteries influences arterial pressure. Am J Physiol Heart Circ Physiol 297:H1096–1102

    Google Scholar 

  • Eid SR (2011) Therapeutic Targeting of TRP Channels—The TR(i)P to Pain Relief. Curr Top Med Chem 11:2118–2130

    PubMed  CAS  Google Scholar 

  • Everaerts W, Gevaert T, Nilius B, De Ridder D (2008) On the origin of bladder sensing: Tr(i)ps in urology. Neurourol Urodyn 27:264–273

    PubMed  CAS  Google Scholar 

  • Everaerts W, Nilius B, Owsianik G (2010) The vanilloid transient receptor potential channel TRPV4: from structure to disease. Prog Biophys Mol Biol 103:2–17

    PubMed  CAS  Google Scholar 

  • Everaerts W, Vriens J, Owsianik G, Appendino G, Voets T, De Ridder D, Nilius B (2010) Functional characterization of transient receptor potential channels in mouse urothelial cells. Am J Physiol Renal Physiol 298:F692–701

    Google Scholar 

  • Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci USA 107:19084–19089

    PubMed  CAS  Google Scholar 

  • Facer P, Casula MA, Smith GD, Benham CD, Chessell IP, Bountra C, Sinisi M, Birch R, Anand P (2007) Differential expression of the capsaicin receptor TRPV1 and related novel receptors TRPV3, TRPV4 and TRPM8 in normal human tissues and changes in traumatic and diabetic neuropathy. BMC Neurol 7:11

    PubMed  Google Scholar 

  • Fan HC, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884–27891

    PubMed  CAS  Google Scholar 

  • Fecto F, Shi Y, Huda R, Martina M, Siddique T, Deng HX (2011) Mutant TRPV4-mediated Toxicity Is Linked to Increased Constitutive Function in Axonal Neuropathies. J Biol Chem 286:17281–17291

    PubMed  CAS  Google Scholar 

  • Ferguson DR, Kennedy I, Burton TJ (1997) ATP is released from rabbit urinary bladder epithelial cells by hydrostatic pressure changes–a possible sensory mechanism?. J Physiol 505:503–11

    PubMed  CAS  Google Scholar 

  • Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5’-6’-epoxyeicosatrienoic acid. J Gen Physiol 131:i2 J Cell Biol 181:143–155

    CAS  Google Scholar 

  • Fernandez-Fernandez JM, Andrade YN, Arniges M, Fernandes J, Plata C, Rubio-Moscardo F, Vazquez E, Valverde MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457:149–159

    PubMed  CAS  Google Scholar 

  • Fian R, Grasser E, Treiber F, Schmidt R, Niederl P, Rosker C (2007) The contribution of TRPV4-mediated calcium signaling to calcium homeostasis in endothelial cells. J Recept Signal Transduct Res 27:113–124

    PubMed  CAS  Google Scholar 

  • Freichel M, Philipp S, Cavalie A, Flockerzi V (2004) TRPC4 and TRPC4-deficient mice. Novartis Found Symp 258:189–199; discussion 199–203, 263–186

    PubMed  CAS  Google Scholar 

  • Fu Y, Subramanya A, Rozansky D, Cohen DM (2006) WNK kinases influence TRPV4 channel function and localization. Am J Physiol Renal Physiol 290:F1305–1314

    Google Scholar 

  • Gamba G (2006) TRPV4: a new target for the hypertension-related kinases WNK1 and WNK4. Am J Physiol Renal Physiol 290:F1303–1304

    Google Scholar 

  • Gaudet R (2008) A primer on ankyrin repeat function in TRP channels and beyond. Mol Biosyst 4:372–9

    PubMed  CAS  Google Scholar 

  • Gao F, Wang DH (2010) Hypotension induced by activation of the transient receptor potential vanilloid 4 channels: role of Ca2+ -activated K+ channels and sensory nerves. J Hypertens 28:102–110

    PubMed  CAS  Google Scholar 

  • Gao F, Wang DH (2010) Impairment in function and expression of transient receptor potential vanilloid type 4 in Dahl salt-sensitive rats: significance and mechanism. Hypertension 55:1018–1025

    PubMed  CAS  Google Scholar 

  • Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    PubMed  CAS  Google Scholar 

  • Gao F, Sui D, Garavito RM, Worden RM, Wang DH (2009) Salt intake augments hypotensive effects of transient receptor potential vanilloid 4: functional significance and implication. Hypertension 53:228–235

    PubMed  CAS  Google Scholar 

  • García-Martínez C, Morenilla-Palao C, Planells-Cases R, Merino JM, Ferrer-Montiel A (2000) Identification of an aspartic residue in the P-loop of the vanilloid receptor that modulates pore properties. J Biol Chem 275:32552–32558

    PubMed  Google Scholar 

  • Garcia-Elias A, Lorenzo IM, Vicente R, Valverde MA (2008) IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem 283:31284–31288

    PubMed  CAS  Google Scholar 

  • Gemignani F, Marbini A, Di Giovanni G, Salih S, Terzano MG (1999) Charcot-Marie-Tooth disease type 2 with restless legs syndrome. Neurology 52:1064–1066

    PubMed  CAS  Google Scholar 

  • Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T, Talavera K, Owsianik G, Liedtke W, Daelemans D, Dewachter I, Van Leuven F, Voets T, De Ridder D, Nilius B (2007) Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J Clin Invest 117:3453–3462

    PubMed  CAS  Google Scholar 

  • Goswami C, Kuhn J, Heppenstall PA, Hucho T (2010) Importance of non-selective cation channel TRPV4 interaction with cytoskeleton and their reciprocal regulations in cultured cells. PLoS One 5:e11654

    Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A, Bowman C, Bichet D, Patel A, Sachs F, Martinac B, Hamill OP, Honoré E (2007) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455:1097–103

    PubMed  Google Scholar 

  • Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV, Larusso NF (2007) Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA 104:19138–19143

    PubMed  CAS  Google Scholar 

  • Gradilone SA, Masyuk TV, Huang BQ, Banales JM, Lehmann GL, Radtke BN, Stroope A, Masyuk AI, Splinter PL, LaRusso NF (2010) Activation of Trpv4 reduces the hyperproliferative phenotype of cystic cholangiocytes from an animal model of ARPKD. Gastroenterology 139:304–314 e302

    PubMed  CAS  Google Scholar 

  • Grant AD, Cottrell GS, Amadesi S, Trevisani M, Nicoletti P, Materazzi S, Altier C, Cenac N, Zamponi GW, Bautista-Cruz F, Lopez CB, Joseph EK, Levine JD, Liedtke W, Vanner S, Vergnolle N, Geppetti P, Bunnett NW (2007) Protease-activated receptor 2 sensitizes the transient receptor potential vanilloid 4 ion channel to cause mechanical hyperalgesia in mice. J Physiol 578:715–733

    PubMed  CAS  Google Scholar 

  • Guatteo E, Chung KK, Bowala TK, Bernardi G, Mercuri NB, Lipski J (2005) Temperature sensitivity of dopaminergic neurons of the substantia nigra pars compacta: involvement of transient receptor potential channels. J Neurophysiol 94:3069–3080

    PubMed  CAS  Google Scholar 

  • Guler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  CAS  Google Scholar 

  • Grandl J, Kim SE, Uzzell V, Bursulaya B, Petrus M, Bandell M, Patapoutian A (2010) Temperature-induced opening of TRPV1 ion channel is stabilized by the pore domain. Nat Neurosci 13:708–714

    PubMed  CAS  Google Scholar 

  • Hamamoto T, Takumida M, Hirakawa K, Takeno S, Tatsukawa T (2008) Localization of transient receptor potential channel vanilloid subfamilies in the mouse larynx. Acta Otolaryngol 128:685–693

    PubMed  CAS  Google Scholar 

  • Hamamoto T, Takumida M, Hirakawa K, Tatsukawa T, Ishibashi T (2009) Localization of transient receptor potential vanilloid (TRPV) in the human larynx. Acta Otolaryngol 129:560–568

    PubMed  CAS  Google Scholar 

  • Hamanaka  K, Jian MY, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–932

    Google Scholar 

  • Hamanaka K, Jian MY, Townsley MI, King JA, Liedtke W, Weber DS, Eyal FG, Clapp MM, Parker JC (2010) TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299:L353–362

    Google Scholar 

  • Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C, Liedtke W, Hoyer J, Kohler R (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS One 2:e827

    Google Scholar 

  • Hashimoto H, Otsubo H, Fujihara H, Suzuki H, Ohbuchi T, Yokoyama T, Takei Y, Ueta Y (2010) Centrally administered ghrelin potently inhibits water intake induced by angiotensin II and hypovolemia in rats. J Physiol Sci 60:19–25

    PubMed  CAS  Google Scholar 

  • Hatano N, Itoh Y, Muraki K (2009) Cardiac fibroblasts have functional TRPV4 activated by 4alpha-phorbol 12,13-didecanoate. Life Sci 85:808–814

    PubMed  CAS  Google Scholar 

  • Haudenschild DR, Chen J, Pang N, Lotz MK, D’Lima DD (2010) Rho kinase-dependent activation of SOX9 in chondrocytes. Arthritis Rheum 62:191–200

    PubMed  CAS  Google Scholar 

  • He Y, Wu X, Khan RS, Kastin AJ, Cornelissen-Guillaume GG, Hsuchou H, Robert B, Halberg F, Pan W (2010) IL-15 receptor deletion results in circadian changes of locomotor and metabolic activity. J Mol Neurosci 41:315–321

    PubMed  CAS  Google Scholar 

  • Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M (2005) Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118:917–928

    PubMed  CAS  Google Scholar 

  • Hernández M, Burillo SL, Crespo MS, Nieto ML (1998) Secretory phospholipase A2 activates the cascade of mitogen-activated protein kinases and cytosolic phospholipase A2 in the human astrocytoma cell line 1321N1. J Biol Chem 273:606–612

    PubMed  Google Scholar 

  • Hu L, Ma J, Zhang P, Zheng J (2009) Extracellular hypotonicity induces disturbance of sodium currents in rat ventricular myocytes. Physiol Res 58:807–815

    PubMed  CAS  Google Scholar 

  • Hung CT (2010) Transient receptor potential vanilloid 4 channel as an important modulator of chondrocyte mechanotransduction of osmotic loading. Arthritis Rheum 62:2850–2851

    PubMed  Google Scholar 

  • Hunziker EB (1994) Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech 28:505–519

    PubMed  CAS  Google Scholar 

  • Ishibashi T, Takumida M, Akagi N, Hirakawa K, Anniko M (2009) Changes in transient receptor potential vanilloid (TRPV) 1, 2, 3 and 4 expression in mouse inner ear following gentamicin challenge. Acta Otolaryngol 129:116–126

    PubMed  CAS  Google Scholar 

  • Islam MS (2011) TRP Channels of Islets. Adv Exp Med Biol 704:811–830

    PubMed  CAS  Google Scholar 

  • Itoh Y, Hatano N, Hayashi H, Onozaki K, Miyazawa K, Muraki K (2009) An environmental sensor, TRPV4 is a novel regulator of intracellular Ca2+ in human synoviocytes. Am J Physiol Cell Physiol 297:C1082–1090

    Google Scholar 

  • Jia Y, Wang X, Varty L, Rizzo CA, Yang R, Correll CC, Phelps PT, Egan RW, Hey JA (2004) Functional TRPV4 channels are expressed in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol 287:L272–278

    Google Scholar 

  • Jian MY, King JA, Al-Mehdi AB, Liedtke W, Townsley MI (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38:386–392

    PubMed  CAS  Google Scholar 

  • Jin M, Wu Z, Chen L, Jaimes J, Collins D, Walters ET, O’Neil RG (2011) Determinants of TRPV4 activity following selective activation by small molecule agonist GSK1016790A. PLoS One 6:e16713

    Google Scholar 

  • Jordt SE, Julius D (2002) Molecular basis for species-specific sensitivity to "hot" chili peppers. Cell 108:421–430

    PubMed  CAS  Google Scholar 

  • Karasawa T, Wang Q, Fu Y, Cohen DM, Steyger PS (2008) TRPV4 enhances the cellular uptake of aminoglycoside antibiotics. J Cell Sci 121:2871–2879

    PubMed  CAS  Google Scholar 

  • Karlsson U, Sundgren-Andersson AK, Johansson S, Krupp JJ (2005) Capsaicin augments synaptic transmission in the rat medial preoptic nucleus. Brain Res 1043:1–11

    PubMed  CAS  Google Scholar 

  • Kato K, Morita I (2011) Acidosis environment promotes osteoclast formation by acting on the last phase of preosteoclast differentiation: A study to elucidate the action points of acidosis and search for putative target molecules. Eur J Pharmacol 663:27–39

    PubMed  CAS  Google Scholar 

  • Kim KS, Shin DH, Nam JH, Park KS, Zhang YH, Kim WK, Kim SJ (2010) Functional Expression of TRPV4 Cation Channels in Human Mast Cell Line (HMC-1). Korean J Physiol Pharmacol 14:419–425

    PubMed  CAS  Google Scholar 

  • Kitahara T, Li HS, Balaban CD (2005) Changes in transient receptor potential cation channel superfamily V (TRPV) mRNA expression in the mouse inner ear ganglia after kanamycin challenge. Hear Res 201:132–144

    PubMed  CAS  Google Scholar 

  • Klausen TK, Pagani A, Minassi A, Ech-Chahad A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Appendino G, Nilius B (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem 52:2933–2939

    PubMed  CAS  Google Scholar 

  • Klein CJ, Shi Y, Fecto F, Donaghy M, Nicholson G, McEntagart ME, Crosby AH, Wu Y, Lou H, McEvoy KM, Siddique T, Deng HX, Dyck PJ (2011) TRPV4 mutations and cytotoxic hypercalcemia in axonal Charcot-Marie-Tooth neuropathies. Neurology 76:887–894

    PubMed  CAS  Google Scholar 

  • Kochukov MY, McNearney TA, Fu Y, Westlund KN (2006) Thermosensitive TRP ion channels mediate cytosolic calcium response in human synoviocytes. Am J Physiol Cell Physiol 291:C424–432

    Google Scholar 

  • Kochukov MY, McNearney TA, Yin H, Zhang L, Ma F, Ponomareva L, Abshire S, Westlund KN (2009) Tumor necrosis factor-alpha (TNF-alpha) enhances functional thermal and chemical responses of TRP cation channels in human synoviocytes. Mol Pain 5:49

    PubMed  Google Scholar 

  • Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502

    PubMed  Google Scholar 

  • Kohler R, Hoyer J (2007) Role of TRPV4 in the Mechanotransduction of Shear Stress in Endothelial Cells. In: Liedtke WB, Heller S (ed) TRP Ion Channel Function in Sensory Transduction and Cellular Signaling Cascades. CRC Press, Boca Raton (FL). Chapter 27

    Google Scholar 

  • Kotlikoff MI (2005) EDHF redux: EETs, TRPV4, and Ca2+ sparks. Circ Res 97:1209–1210

    PubMed  CAS  Google Scholar 

  • Kottgen M, Buchholz B, Garcia-Gonzalez MA, Kotsis F, Fu X, Doerken M, Boehlke C, Steffl D, Tauber R, Wegierski T, Nitschke R, Suzuki M, Kramer-Zucker A, Germino GG, Watnick T, Prenen J, Nilius B, Kuehn EW, Walz G (2008) TRPP2 and TRPV4 form a polymodal sensory channel complex. J Cell Biol 182:437–447

    PubMed  Google Scholar 

  • Krakow D, Vriens J, Camacho N, Luong P, Deixler H, Funari TL, Bacino CA, Irons MB, Holm IA, Sadler L, Okenfuss EB, Janssens A, Voets T, Rimoin DL, Lachman RS, Nilius B, Cohn DH (2009) Mutations in the gene encoding the calcium-permeable ion channel TRPV4 produce spondylometaphyseal dysplasia, Kozlowski type and metatropic dysplasia. Am J Hum Genet 84:307–315

    PubMed  CAS  Google Scholar 

  • Kruger J, Kunert-Keil C, Bisping F, Brinkmeier H (2008) Transient receptor potential cation channels in normal and dystrophic mdx muscle. Neuromuscul Disord 18:501–513

    PubMed  Google Scholar 

  • Kullmann FA, Shah MA, Birder LA, de Groat WC (2009) Functional TRP and ASIC-like channels in cultured urothelial cells from the rat. Am J Physiol Renal Physiol 296:F892–901

    Google Scholar 

  • Kumagami H, Terakado M, Sainoo Y, Baba A, Fujiyama D, Fukuda T, Takasaki K, Takahashi H (2009) Expression of the osmotically responsive cationic channel TRPV4 in the endolymphatic sac. Audiol Neurootol 14:190–197

    PubMed  CAS  Google Scholar 

  • Landoure G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC, Inada H, Shi Y, Taye AA, Kong L, Munns CH, Choo SS, Phelps CB, Paudel R, Houlden H, Ludlow CL, Caterina MJ, Gaudet R, Kleta R, Fischbeck KH, Sumner CJ (2010) Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat Genet 42:170–174

    PubMed  CAS  Google Scholar 

  • Lamandé SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D, Kaluarachchi K, Little CB, Botzenhart E, Zerres K, Amor DJ, Cole WG, Savarirayan R, McIntyre P, Bateman JF (2011) Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat Genet 10.1038/ng.945

    Google Scholar 

  • Lechner SG, Markworth S, Poole K, Smith ES, Lapatsina L, Frahm S, May M, Pischke S, Suzuki M, Ibanez-Tallon I, Luft FC, Jordan J, Lewin GR (2011) The molecular and cellular identity of peripheral osmoreceptors. Neuron 69:332–344

    PubMed  CAS  Google Scholar 

  • Lee H, Iida T, Mizuno A, Suzuki M, Caterina MJ (2005) Altered thermal selection behavior in mice lacking transient receptor potential vanilloid 4. J Neurosci 25:1304–1310

    PubMed  CAS  Google Scholar 

  • Lenertz LY, Lee BH, Min X, Xu BE, Wedin K, Earnest S, Goldsmith EJ, Cobb MH (2005) Properties of WNK1 and implications for other family members. J Biol Chem 280:26653–26658

    PubMed  CAS  Google Scholar 

  • Li J, Wang MH, Wang L, Tian Y, Duan YQ, Luo HY, Hu XW, Hescheler J, Tang M (2008) Role of transient receptor potential vanilloid 4 in the effect of osmotic pressure on myocardial contractility in rat. Sheng Li Xue Bao 60:181–188

    PubMed  CAS  Google Scholar 

  • Li L, Liu C, Chen L, Chen L (2009) Hypotonicity modulates tetrodotoxin-sensitive sodium current in trigeminal ganglion neurons. Mol Pain 7:27

    Google Scholar 

  • Li J, Kanju P, Patterson M, Chew WL, Cho SH, Gilmour I, Oliver T, Yasuda R, Ghio A, Simon SA, Liedtke W (2011) TRPV4-Mediated Calcium Influx into Human Bronchial Epithelia upon Exposure to Diesel Exhaust Particles. Environ Health Perspect 119:784–793

    PubMed  CAS  Google Scholar 

  • Liedtke W, Choe Y, Marti-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    PubMed  CAS  Google Scholar 

  • Liedtke W, Friedman JM (2003a) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci USA 100:13698–13703

    CAS  Google Scholar 

  • Liedtke W, Tobin DM, Bargmann CI, Friedman JM (2003b) Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans. Proc Natl Acad Sci USA 100(2):14531–14536

    CAS  Google Scholar 

  • Liedtke W, Simon SA (2004) A possible role for TRPV4 receptors in asthma. Am J Physiol Lung Cell Mol Physiol 287:L269–L271

    Google Scholar 

  • Lipski J, Park TI, Li D, Lee SC, Trevarton AJ, Chung KK, Freestone PS, Bai JZ (2006) Involvement of TRP-like channels in the acute ischemic response of hippocampal CA1 neurons in brain slices. Brain Res 1077:187–199

    PubMed  CAS  Google Scholar 

  • Liu X, Bandyopadhyay BC, Nakamoto T, Singh B, Liedtke W, Melvin JE, Ambudkar I (2006) A role for AQP5 in activation of TRPV4 by hypotonicity: concerted involvement of AQP5 and TRPV4 in regulation of cell volume recovery. J Biol Chem 281:15485–15495

    PubMed  CAS  Google Scholar 

  • Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 80:445–452

    PubMed  CAS  Google Scholar 

  • Lorenzo IM, Liedtke W, Sanderson MJ, Valverde MA (2008) TRPV4 channel participates in receptor-operated calcium entry and ciliary beat frequency regulation in mouse airway epithelial cells. Proc Natl Acad Sci USA 105:12611–12616

    PubMed  CAS  Google Scholar 

  • Loukin SH, Su Z, Kung C (2009) Hypotonic shocks activate rat TRPV4 in yeast in the absence of polyunsaturated fatty acids. FEBS Lett 583:754–758

    PubMed  CAS  Google Scholar 

  • Loukin S, Su Z, Zhou X, Kung C (2010a) Forward genetic analysis reveals multiple gating mechanisms of TRPV4. J Biol Chem 285:19884–19890

    CAS  Google Scholar 

  • Loukin S, Zhou X, Su Z, Saimi Y, Kung C (2010b) Wild-type and brachyolmia-causing mutant TRPV4 channels respond directly to stretch force. J Biol Chem 285:27176–27181

    CAS  Google Scholar 

  • Loukin S, Su Z, Kung C (2011) Increased Basal Activity Is a Key Determinant in the Severity of Human Skeletal Dysplasia Caused by TRPV4 Mutations. PLoS One 6:e19533

    Google Scholar 

  • Lowry CA, Lightman SL, Nutt DJ (2009) That warm fuzzy feeling: brain serotonergic neurons and the regulation of emotion. J Psychopharmacol 23:392–400

    PubMed  CAS  Google Scholar 

  • Lu W, Shen X, Pavlova A, Lakkis M, Ward CJ, Pritchard L, Harris PC, Genest DR, Perez-Atayde AR, Zhou J (2001) Comparison of Pkd1-targeted mutants reveals that loss of polycystin-1 causes cystogenesis and bone defects. Hum Mol Genet 10:2385–2396

    PubMed  CAS  Google Scholar 

  • Lumpkin EA, Caterina MJ (2007) Mechanisms of sensory transduction in the skin. Nature 445:858–865

    PubMed  CAS  Google Scholar 

  • Ma YY, Huo HR, Li CH, Zhao BS, Li LF, Sui F, Guo SY, Jiang TL (2008) Effects of cinnamaldehyde on PGE2 release and TRPV4 expression in mouse cerebral microvascular endothelial cells induced by interleukin-1beta. Biol Pharm Bull 31:426–430

    PubMed  CAS  Google Scholar 

  • Ma X, Cao J, Luo J, Nilius B, Huang Y, Ambudkar IS, Yao X (2010a) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30:2249–2255

    CAS  Google Scholar 

  • Ma X, Qiu S, Luo J, Ma Y, Ngai CY, Shen B, Wong CO, Huang Y, Yao X (2010b) Functional role of vanilloid transient receptor potential 4-canonical transient receptor potential 1 complex in flow-induced Ca2+ influx. Arterioscler Thromb Vasc Biol 30:851–858

    CAS  Google Scholar 

  • Ma X, Cheng KT, Wong CO, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Heteromeric TRPV4-C1 channels contribute to store-operated Ca(2+) entry in vascular endothelial cells. Cell Calcium 50:502–509

    Google Scholar 

  • Mamenko M, Zaika O, Jin M, O’Neil RG, Pochynyuk O (2011) Purinergic Activation of Ca-Permeable TRPV4 Channels Is Essential for Mechano-Sensitivity in the Aldosterone-Sensitive Distal Nephron. PLoS One 6:e22824

    Google Scholar 

  • Magloire H, Maurin JC, Couble ML, Shibukawa Y, Tsumura M, Thivichon-Prince B, Bleicher F (2010) Topical review. Dental pain and odontoblasts: facts and hypotheses. J Orofac Pain 24:335–349

    PubMed  Google Scholar 

  • Mangos S, Liu Y, Drummond IA (2007) Dynamic expression of the osmosensory channel trpv4 in multiple developing organs in zebrafish. Gene Expr Patterns 7:480–484

    PubMed  CAS  Google Scholar 

  • Marrelli SP, O’Neil RG, Brown RC, Bryan RM, Jr. (2007) PLA2 and TRPV4 channels regulate endothelial calcium in cerebral arteries. Am J Physiol Heart Circ Physiol 292:H1390–1397

    Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7:179–185

    PubMed  CAS  Google Scholar 

  • Masuyama R, Vriens J, Voets T, Karashima Y, Owsianik G, Vennekens R, Lieben L, Torrekens S, Moermans K, Vanden Bosch A, Bouillon R, Nilius B, Carmeliet G (2008) TRPV4-mediated calcium influx regulates terminal differentiation of osteoclasts. Cell Metab 8:257–265

    PubMed  CAS  Google Scholar 

  • Matthews BD, Thodeti CK, Tytell JD, Mammoto A, Overby DR, Ingber DE (2010) Ultra-rapid activation of TRPV4 ion channels by mechanical forces applied to cell surface beta1 integrins. Integr Biol (Camb) 2:435–442

    CAS  Google Scholar 

  • May M, Jordan J (2011) The osmopressor response to water drinking. Am J Physiol Regul Integr Comp Physiol 300:R40–46

    Google Scholar 

  • McHugh J, Keller NR, Appalsamy M, Thomas SA, Raj SR, Diedrich A, Biaggioni I, Jordan J, Robertson D (2010) Portal osmopressor mechanism linked to transient receptor potential vanilloid 4 and blood pressure control. Hypertension 55:1438–1443

    PubMed  CAS  Google Scholar 

  • Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298:H466–476

    Google Scholar 

  • Mergler S, Garreis F, Sahlmuller M, Reinach PS, Paulsen F, Pleyer U (2010) Thermosensitive transient receptor potential channels in human corneal epithelial cells. J Cell Physiol 226:1828–1842

    Google Scholar 

  • Mihara H, Boudaka A, Sugiyama T, Moriyama Y, Tominaga M (2011) Transient Receptor Potential Vanilloid 4 (TRPV4)-dependent calcium influx and ATP release in mouse esophageal keratinocytes. J Physiol 589:3471–3482

    PubMed  CAS  Google Scholar 

  • Millar ID, Bruce J, Brown PD (2007) Ion channel diversity, channel expression and function in the choroid plexuses. Cerebrospinal Fluid Res 4:8

    PubMed  Google Scholar 

  • Mizoguchi F, Mizuno A, Hayata T, Nakashima K, Heller S, Ushida T, Sokabe M, Miyasaka N, Suzuki M, Ezura Y, Noda M (2008) Transient receptor potential vanilloid 4 deficiency suppresses unloading-induced bone loss. J Cell Physiol 216:47–53

    PubMed  CAS  Google Scholar 

  • Mizuno A, Matsumoto N, Imai M, Suzuki M (2003) Impaired osmotic sensation in mice lacking TRPV4. Am J Physiol Cell Physiol 285:C96–101

    Google Scholar 

  • Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K, Uchida K, Naruse K, Koizumi S, Takeda M, Tominaga M (2009) The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J Biol Chem 284:21257–21264

    PubMed  CAS  Google Scholar 

  • Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci USA 105:7451–7455

    PubMed  CAS  Google Scholar 

  • Moqrich A, Hwang SW, Earley TJ, Petrus MJ, Murray AN, Spencer KS, Andahazy M, Story GM, Patapoutian A (2005) Impaired thermosensation in mice lacking TRPV3, a heat and camphor sensor in the skin. Science 307:1468–1472

    PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, Clapham D, Harteneck C, Heller S, Julius D, Kojima I, Mori Y, Penner R, Prawitt D, Scharenberg AM, Schultz G, Shimizu S, Zhu MX (2002) A unified nomenclature for the superfamily of TRP cation channels. Mol Cell 9:229–231

    PubMed  CAS  Google Scholar 

  • Muramatsu S, Wakabayashi M, Ohno T, Amano K, Ooishi R, Sugahara T, Shiojiri S, Tashiro K, Suzuki Y, Nishimura R, Kuhara S, Sugano S, Yoneda T, Matsuda A (2007) Functional gene screening system identified TRPV4 as a regulator of chondrogenic differentiation. J Biol Chem 282:32158–32167

    PubMed  CAS  Google Scholar 

  • Nakatsuka M, Iwai Y (2009) Expression of TRPV4 in the stimulated rat oral mucous membrane–nociceptive mechanisms of lingual conical papillae. Okajimas Folia Anat Jpn 86:45–54

    PubMed  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    PubMed  CAS  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bodding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflügers Arch 443:227–233

    PubMed  CAS  Google Scholar 

  • Nilius B, Watanabe H, Vriens J (2003) The TRPV4 channel: structure-function relationship and promiscuous gating behaviour. Pflügers Arch 446:298–303

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G, Wondergem R (2003) Transient receptor potential channels in endothelium: solving the calcium entry puzzle?. Endothelium 10:5–15

    PubMed  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–205

    Google Scholar 

  • Nishimura G, Dai J, Lausch E, Unger S, Megarbane A, Kitoh H, Kim OH, Cho TJ, Bedeschi F, Benedicenti F, Mendoza-Londono R, Silengo M, Schmidt-Rimpler M, Spranger J, Zabel B, Ikegawa S, Superti-Furga A (2010) Spondylo-epiphyseal dysplasia, Maroteaux type (pseudo-Morquio syndrome type 2), and parastremmatic dysplasia are caused by TRPV4 mutations. Am J Med Genet A 152A:1443–1449

    Google Scholar 

  • Obeidat M, Wain LV, Shrine N, Kalsheker N, Artigas MS, Repapi E, Burton PR, Johnson T, Ramasamy A, Zhao JH, Zhai G, Huffman JE, Vitart V, Albrecht E, Igl W, Hartikainen AL, Pouta A, Cadby G, Hui J, Palmer LJ, Hadley D, McArdle WL, Rudnicka AR, Barroso I, Loos RJ, Wareham NJ, Mangino M, Soranzo N, Spector TD, Glaser S, Homuth G, Volzke H, Deloukas P, Granell R, Henderson J, Grkovic I, Jankovic S, Zgaga L, Polasek O, Rudan I, Wright AF, Campbell H, Wild SH, Wilson JF, Heinrich J, Imboden M, Probst-Hensch NM, Gyllensten U, Johansson A, Zaboli G, Mustelin L, Rantanen T, Surakka I, Kaprio J, Jarvelin MR, Hayward C, Evans DM, Koch B, Musk AW, Elliott P, Strachan DP, Tobin MD, Sayers I, Hall IP, Consortium S (2011) A Comprehensive evaluation of potential lung function associated genes in the spirometa general population sample. PLoS One 6:e19382

    Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflügers Arch 451:193–203

    PubMed  Google Scholar 

  • Pan Z, Yang H, Mergler S, Liu H, Tachado SD, Zhang F, Kao WW, Koziel H, Pleyer U, Reinach PS (2008) Dependence of regulatory volume decrease on transient receptor potential vanilloid 4 (TRPV4) expression in human corneal epithelial cells. Cell Calcium 44:374–385

    PubMed  CAS  Google Scholar 

  • Peng H, Lewandrowski U, Muller B, Sickmann A, Walz G, Wegierski T (2010) Identification of a Protein Kinase C-dependent phosphorylation site involved in sensitization of TRPV4 channel. Biochem Biophys Res Commun 391:1721–1725

    PubMed  CAS  Google Scholar 

  • Phan MN, Leddy HA, Votta BJ, Kumar S, Levy DS, Lipshutz DB, Lee SH, Liedtke W, Guilak F (2009) Functional characterization of TRPV4 as an osmotically sensitive ion channel in porcine articular chondrocytes. Arthritis Rheum 60:3028–3037

    PubMed  CAS  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740

    PubMed  CAS  Google Scholar 

  • Pritschow BW, Lange T, Kasch J, Kunert-Keil C, Liedtke W, Brinkmeier H (2011) Functional TRPV4 channels are expressed in mouse skeletal muscle and can modulate resting Ca2+ influx and muscle fatigue. Pflügers Arch 461:115–122

    PubMed  CAS  Google Scholar 

  • Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J (2007) Spectrally and spatially resolved fluorescence lifetime imaging in living cells: TRPV4-microfilament interactions. Arch Biochem Biophys 463:27–36

    PubMed  CAS  Google Scholar 

  • Rath G, Dessy C, Feron O (2009) Caveolae, caveolin and control of vascular tone: nitric oxide (NO) and endothelium derived hyperpolarizing factor (EDHF) regulation. J Physiol Pharmacol 60(4):105–109

    PubMed  Google Scholar 

  • Reiter B, Kraft R, Gunzel D, Zeissig S, Schulzke JD, Fromm M, Harteneck C (2006) TRPV4-mediated regulation of epithelial permeability. Faseb J 20:1802–1812

    PubMed  CAS  Google Scholar 

  • Rock MJ, Prenen J, Funari VA, Funari TL, Merriman B, Nelson SF, Lachman RS, Wilcox WR, Reyno S, Quadrelli R, Vaglio A, Owsianik G, Janssens A, Voets T, Ikegawa S, Nagai T, Rimoin DL, Nilius B, Cohn DH (2008) Gain-of-function mutations in TRPV4 cause autosomal dominant brachyolmia. Nat Genet 40:999–1003

    PubMed  CAS  Google Scholar 

  • Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Renteria RC, Liedtke W, Krizaj D (2011) The polymodal Ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31:7089–7101

    PubMed  CAS  Google Scholar 

  • Salazar H, Jara-Oseguera A, Hernández-García E, Llorente I, Arias-Olguín II, Soriano-García M, Islas LD, Rosenbaum T (2009) Structural determinants of gating in the TRPV1 channel. Nat Struct Mol Biol 16:704–710

    PubMed  CAS  Google Scholar 

  • Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand JL, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074

    PubMed  CAS  Google Scholar 

  • Schierling W, Troidl K, Apfelbeck H, Troidl C, Kasprzak PM, Schaper W, Schmitz-Rixen T (2011) Cerebral arteriogenesis is enhanced by pharmacological as well as fluid-shear-stress activation of the Trpv4 calcium channel. Eur J Vasc Endovasc Surg 41:589–596

    PubMed  CAS  Google Scholar 

  • Seminario-Vidal L, Okada SF, Sesma JI, Kreda SM, van Heusden CA, Zhu Y, Jones LC, O’Neal WK, Penuela S, Laird DW, Boucher RC, Lazarowski ER (2011) RHO signaling regulates pannexin 1-mediated ATP release from airway epithelia. J Biol Chem 286:26277–26286

    PubMed  CAS  Google Scholar 

  • Sedgwick SG, Smerdon SJ (1999) The ankyrin repeat: a diversity of interactions on a common structural framework. Trends Biochem 24(8):311–316

    CAS  Google Scholar 

  • Sharif Naeini R, Witty MF, Séguéla P, Bourque CW (2006) An N-terminal variant of Trpv1 channel is required for osmosensory transduction. Nat Neurosci 9:93–8

    PubMed  Google Scholar 

  • Shakibaei M, De Souza P, Merker HJ (1997) Integrin expression and collagen type II implicated in maintenance of chondrocyte shape in monolayer culture: an immunomorphological study. Cell Biol Int 21:115–125

    PubMed  CAS  Google Scholar 

  • Shen J, Harada N, Kubo N, Liu B, Mizuno A, Suzuki M, Yamashita T (2006) Functional expression of transient receptor potential vanilloid 4 in the mouse cochlea. Neuroreport 17:135–139

    PubMed  CAS  Google Scholar 

  • Shibasaki K, Suzuki M, Mizuno A, Tominaga M (2007) Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4. J Neurosci 27:1566–1575

    PubMed  CAS  Google Scholar 

  • Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218

    PubMed  CAS  Google Scholar 

  • Shikano M, Ueda T, Kamiya T, Ishida Y, Yamada T, Mizushima T, Shimura T, Mizoshita T, Tanida S, Kataoka H, Shimada S, Ugawa S, Joh T. (2011) Acid inhibits TRPV4-mediated Ca2+ influx in mouse esophageal epithelial cells. Neurogastroenterol Motil. 1111/j.1365–2982

    Google Scholar 

  • Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ (2010) Arresting a transient receptor potential (TRP) channel: beta-arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285:30115–30125

    PubMed  CAS  Google Scholar 

  • Sidhaye VK, Guler AD, Schweitzer KS, D’Alessio F, Caterina MJ, King LS (2006) Transient receptor potential vanilloid 4 regulates aquaporin-5 abundance under hypotonic conditions. Proc Natl Acad Sci USA 103:4747–4752

    PubMed  CAS  Google Scholar 

  • Sidhaye VK, Schweitzer KS, Caterina MJ, Shimoda L, King LS (2008) Shear stress regulates aquaporin-5 and airway epithelial barrier function. Proc Natl Acad Sci USA 105:3345–3350

    PubMed  CAS  Google Scholar 

  • Silva GB, Garvin JL (2008) TRPV4 mediates hypotonicity-induced ATP release by the thick ascending limb. Am J Physiol Renal Physiol 295:F1090–1095

    Google Scholar 

  • Sipe WE, Brierley SM, Martin CM, Phillis BD, Cruz FB, Grady EF, Liedtke W, Cohen DM, Vanner S, Blackshaw LA, Bunnett NW (2008) Transient receptor potential vanilloid 4 mediates protease activated receptor 2-induced sensitization of colonic afferent nerves and visceral hyperalgesia. Am J Physiol Gastrointest Liver Physiol 294:G1288–1298

    Google Scholar 

  • Smith PL, Maloney KN, Pothen RG, Clardy J, Clapham DE (2006) Bisandrographolide from Andrographis paniculata activates TRPV4 channels. J Biol Chem 281:29897–29904

    PubMed  CAS  Google Scholar 

  • Sokabe T, Fukumi-Tominaga T, Yonemura S, Mizuno A, Tominaga M (2010) The TRPV4 channel contributes to intercellular junction formation in keratinocytes. J Biol Chem 285:18749–18758

    PubMed  CAS  Google Scholar 

  • Sole-Magdalena A, Revuelta EG, Menenez-Diaz I, Calavia MG, Cobo T, Garcia-Suarez O, Perez-Pinera P, De Carlos F, Cobo J, Vega JA (2011) Human odontoblasts express transient receptor protein and acid-sensing ion channel mechanosensor proteins. Microsc Res Tech 74:457–463

    PubMed  CAS  Google Scholar 

  • Son AR, Yang YM, Hong JH, Lee SI, Shibukawa Y, Shin DM (2009) Odontoblast TRP channels and thermo/mechanical transmission. J Dent Res 88:1014–1019

    PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103:16586–165891

    PubMed  CAS  Google Scholar 

  • Spinsanti G, Zannolli R, Panti C, Ceccarelli I, Marsili L, Bachiocco V, Frati F, Aloisi AM (2008) Quantitative Real-Time PCR detection of TRPV1–4 gene expression in human leukocytes from healthy and hyposensitive subjects. Mol Pain 4:51

    PubMed  Google Scholar 

  • Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797

    PubMed  CAS  Google Scholar 

  • Steyger PS, Karasawa T (2008) Intra-cochlear trafficking of aminoglycosides. Commun Integr Biol 1:140–142

    PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702

    PubMed  CAS  Google Scholar 

  • Strotmann R, Schultz G, Plant TD (2003) Ca2+ -dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278:26541–26549

    PubMed  CAS  Google Scholar 

  • Strotmann R, Semtner M, Kepura F, Plant TD, Schoneberg T (2010) Interdomain interactions control Ca2+ -dependent potentiation in the cation channel TRPV4. PLoS One 5:e10580

    Google Scholar 

  • Suzuki M, Mizuno A, Kodaira K, Imai M (2003a) Impaired pressure sensation in mice lacking TRPV4. J Biol Chem 278:22664–22668

    CAS  Google Scholar 

  • Suzuki M, Hirao A, Mizuno A (2003b) Microtubule-associated [corrected] protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278:51448–51453

    CAS  Google Scholar 

  • Suzuki M, Watanabe Y, Oyama Y, Mizuno A, Kusano E, Hirao A, Ookawara S (2003c) Localization of mechanosensitive channel TRPV4 in mouse skin. Neurosci Lett 353:189–192

    CAS  Google Scholar 

  • Tabuchi K, Suzuki M, Mizuno A, Hara A (2005) Hearing impairment in TRPV4 knockout mice. Neurosci Lett 382:304–308

    PubMed  CAS  Google Scholar 

  • Taguchi D, Takeda T, Kakigi A, Takumida M, Nishioka R, Kitano H (2007) Expressions of aquaporin-2, vasopressin type 2 receptor, transient receptor potential channel vanilloid (TRPV)1, and TRPV4 in the human endolymphatic sac. Laryngoscope 117:695–698

    PubMed  CAS  Google Scholar 

  • Takeda-Nakazawa H, Harada N, Shen J, Kubo N, Zenner HP, Yamashita T (2007) Hyposmotic stimulation-induced nitric oxide production in outer hair cells of the guinea pig cochlea. Hear Res 230:93–104

    PubMed  CAS  Google Scholar 

  • Takumida M, Kubo N, Ohtani M, Suzuka Y, Anniko M (2005) Transient receptor potential channels in the inner ear: presence of transient receptor potential channel subfamily 1 and 4 in the guinea pig inner ear. Acta Otolaryngol 125:929–934

    PubMed  Google Scholar 

  • Tanaka R, Muraki K, Ohya S, Yamamura H, Hatano N, Itoh Y, Imaizumi Y (2008) TRPV4-like non-selective cation currents in cultured aortic myocytes. J Pharmacol Sci 108:179–189

    PubMed  CAS  Google Scholar 

  • Taniguchi J, Tsuruoka S, Mizuno A, Sato J, Fujimura A, Suzuki M (2007) TRPV4 as a flow sensor in flow-dependent K+ secretion from the cortical collecting duct. Am J Physiol Renal Physiol 292:F667–673

    Google Scholar 

  • Taylor AC, McCarthy JJ, Stocker SD (2008) Mice lacking the transient receptor vanilloid potential 1 channel display normal thirst responses and central Fos activation to hypernatremia. Am J Physiol Regul Integr Comp Physiol 294 R1285–1293

    Google Scholar 

  • Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71:444–452

    PubMed  CAS  Google Scholar 

  • Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130

    PubMed  CAS  Google Scholar 

  • Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ES, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1 S)-1-{[4-((2 S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}- 3- hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamid e (GSK1016790 A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: Part I. J Pharmacol Exp Ther 326:432–442

    PubMed  CAS  Google Scholar 

  • Tian W, Salanova M, Xu H, Lindsley JN, Oyama TT, Anderson S, Bachmann S, Cohen DM (2004) Renal expression of osmotically responsive cation channel TRPV4 is restricted to water-impermeant nephron segments. Am J Physiol Renal Physiol 287:F17–24

    Google Scholar 

  • Tian W, Fu Y, Garcia-Elias A, Fernandez-Fernandez JM, Vicente R, Kramer PL, Klein RF, Hitzemann R, Orwoll ES, Wilmot B, McWeeney S, Valverde MA, Cohen DM (2009) A loss-of-function nonsynonymous polymorphism in the osmoregulatory TRPV4 gene is associated with human hyponatremia. Proc Natl Acad Sci USA 106:14034–14039

    PubMed  CAS  Google Scholar 

  • Troidl C, Troidl K, Schierling W, Cai WJ, Nef H, Möllmann H, Kostin S, Schimanski S, Hammer L, Elsässer A, Schmitz-Rixen T, Schaper W (2009) Trpv4 induces collateral vessel growth during regeneration of the arterial circulation. J Cell Mol Med 13:2613–2621

    PubMed  Google Scholar 

  • Todaka H, Taniguchi J, Satoh J, Mizuno A, Suzuki M (2004) Warm temperature-sensitive transient receptor potential vanilloid 4 (TRPV4) plays an essential role in thermal hyperalgesia. J Biol Chem 279:35133–35138

    PubMed  CAS  Google Scholar 

  • Townsley MI, King JA, Alvarez DF (2006) Ca2+ channels and pulmonary endothelial permeability: insights from study of intact lung and chronic pulmonary hypertension. Microcirculation 13:725–739

    PubMed  CAS  Google Scholar 

  • Tsushima H, Mori M (2006) Antidipsogenic effects of a TRPV4 agonist, 4alpha-phorbol 12,13-didecanoate, injected into the cerebroventricle. Am J Physiol Regul Integr Comp Physiol 290:R1736–1741

    Google Scholar 

  • Ueda T, Shikano M, Kamiya T, Joh T, Ugawa S (2011) The TRPV4 channel is a novel regulator of intracellular Ca2+ in human esophageal epithelial cells. Am J Physiol Gastrointest Liver Physiol 301:G138–147

    Google Scholar 

  • Vergnolle N , Cenac N, Altier C, Cellars L, Chapman K, Zamponi GW, Materazzi S, Nassini R, Liedtke W, Cattaruzza F, Grady EF, Geppetti P, Bunnett NW (2010) A role for transient receptor potential vanilloid 4 in tonicity-induced neurogenic inflammation. Br J Pharmacol 159:1161–1173

    Google Scholar 

  • Verma P, Kumar A, Goswami C (2010) TRPV4-mediated channelopathies. Channels (Austin) 4:319–328

    CAS  Google Scholar 

  • Vincent F, Acevedo A, Nguyen MT, Dourado M, DeFalco J, Gustafson A, Spiro P, Emerling DE, Kelly MG, Duncton MA (2009) Identification and characterization of novel TRPV4 modulators. Biochem Biophys Res Commun 389:490–494

    PubMed  CAS  Google Scholar 

  • Vlachová V, Teisinger J, Susánková K, Lyfenko A, Ettrich R, Vyklický L (2003) Functional role of C-terminal cytoplasmic tail of rat vanilloid receptor 1. J Neurosci 23:1340–1350

    PubMed  Google Scholar 

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bodding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710

    PubMed  CAS  Google Scholar 

  • Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold- and heat-sensitive TRP channels. Nature 430:748–754

    PubMed  CAS  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci USA 101:396–401

    PubMed  CAS  Google Scholar 

  • Vriens J, Janssens A, Prenen J, Nilius B, Wondergem R (2004) TRPV channels and modulation by hepatocyte growth factor/scatter factor in human hepatoblastoma (HepG2) cells. Cell Calcium 36:19–28

    PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Fisslthaler B, Suzuki M, Janssens A, Voets T, Morisseau C, Hammock BD, Fleming I, Busse R, Nilius B (2005) Modulation of the Ca2 permeable cation channel TRPV4 by cytochrome P450 epoxygenases in vascular endothelium. Circ Res 97:908–915

    PubMed  CAS  Google Scholar 

  • Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282:12796–1280

    PubMed  CAS  Google Scholar 

  • Wang T, Wang Y, Yamashita H (2009) Evodiamine inhibits adipogenesis via the EGFR-PKCalpha-ERK signaling pathway. FEBS Lett 583:3655–3659

    PubMed  CAS  Google Scholar 

  • Wang Y, Fu X, Gaiser S, Kottgen M, Kramer-Zucker A, Walz G, Wegierski T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282:36561–36570

    PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002a) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051

    CAS  Google Scholar 

  • Watanabe H, Davis JB, Smart D, Jerman JC, Smith GD, Hayes P, Vriens J, Cairns W, Wissenbach U, Prenen J, Flockerzi V, Droogmans G, Benham CD, Nilius B (2002b) Activation of TRPV4 channels (hVRL-2/mTRP12) by phorbol derivatives. J Biol Chem 277:13569–13577

    CAS  Google Scholar 

  • Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003a) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–495

    CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003b) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438

    CAS  Google Scholar 

  • Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. Embo J 25:5659–5669

    PubMed  CAS  Google Scholar 

  • Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G (2009) Tyrosine phosphorylation modulates the activity of TRPV4 in response to defined stimuli. J Biol Chem 284:2923–2933

    PubMed  CAS  Google Scholar 

  • Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout RE, Votta BJ, Thorneloe K, Lashinger ES, Figueroa DJ, Marquis R, Xu X (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326:443–452

    PubMed  CAS  Google Scholar 

  • Wilson FH, Disse-Nicodème S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP (2001) Human hypertension caused by mutations in WNK kinases. Science 293:1107–1112

    PubMed  CAS  Google Scholar 

  • Xiao Z, Zhang S, Mahlios J, Zhou G, Magenheimer BS, Guo D, Dallas SL, Maser R, Calvet JP, Bonewald L, Quarles LD (2006) Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression. J Biol Chem 281:30884–30895

    PubMed  CAS  Google Scholar 

  • Xu F, Satoh E, Iijima T (2003a) Protein kinase C-mediated Ca2+ entry in HEK 293 cells transiently expressing human TRPV4. Br J Pharmacol 140:413–421

    CAS  Google Scholar 

  • Xu H, Zhao H, Tian W, Yoshida K, Roullet JB, Cohen DM (2003b) Regulation of a transient receptor potential (TRP) channel by tyrosine phosphorylation. SRC family kinase-dependent tyrosine phosphorylation of TRPV4 on TYR-253 mediates its response to hypotonic stress. J Biol Chem 278:11520–11527

    CAS  Google Scholar 

  • Xu H, Fu Y, Tian W, Cohen DM (2006) Glycosylation of the osmoresponsive transient receptor potential channel TRPV4 on Asn-651 influences membrane trafficking. Am J Physiol Renal Physiol 290:F1103–1109

    Google Scholar 

  • Xu X, Gordon E, Lin Z, Lozinskaya IM, Chen Y, Thorneloe KS (2009) Functional TRPV4 channels and an absence of capsaicin-evoked currents in freshly-isolated, guinea-pig urothelial cells. Channels (Austin) 3:156–160

    CAS  Google Scholar 

  • Yamada T, Ugawa S, Ueda T, Ishida Y, Kajita K, Shimada S (2009) Differential localizations of the transient receptor potential channels TRPV4 and TRPV1 in the mouse urinary bladder. J Histochem Cytochem 57:277–287

    PubMed  CAS  Google Scholar 

  • Yang W, Chen J, Zhou L (2009) Effects of shear stress on intracellular calcium change and histamine release in rat basophilic leukemia (RBL-2H3) cells. J Environ Pathol Toxicol Oncol 28:223–230

    PubMed  CAS  Google Scholar 

  • Yang XR, Lin MJ, McIntosh LS, Sham JS (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–1276

    Google Scholar 

  • Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM (2008) Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102:966–974

    PubMed  CAS  Google Scholar 

  • Yu W, Hill WG, Apodaca G, Zeidel ML (2011) Expression and distribution of transient receptor potential (TRP) channels in bladder epithelium. Am J Physiol Renal Physiol 300:F49–59

    Google Scholar 

  • Zaninetti R, Fornarelli A, Ciarletta M, Lim D, Caldarelli A, Pirali T, Cariboni A, Owsianik G, Nilius B, Canonico PL, Distasi C, Genazzani AA (2011) Activation of TRPV4 channels reduces migration of immortalized neuroendocrine cells. J Neurochem 116:606–615

    PubMed  CAS  Google Scholar 

  • Zhang DX, Mendoza SA, Bubolz AH, Mizuno A, Ge ZD, Li R, Warltier DC, Suzuki M, Gutterman DD (2009) Transient receptor potential vanilloid type 4-deficient mice exhibit impaired endothelium-dependent relaxation induced by acetylcholine in vitro and in vivo. Hypertension 53:532–538

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wang YH, Ge HY, Arendt-Nielsen L, Wang R, Yue SW (2008) A transient receptor potential vanilloid 4 contributes to mechanical allodynia following chronic compression of dorsal root ganglion in rats. Neurosci Lett 432:222–227

    PubMed  CAS  Google Scholar 

  • Zhu G, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18:2053–2062

    PubMed  CAS  Google Scholar 

  • Zimon M, Baets J, Auer-Grumbach M, Berciano J, Garcia A, Lopez-Laso E, Merlini L, Hilton-Jones D, McEntagart M, Crosby AH, Barisic N, Boltshauser E, Shaw CE, Landoure G, Ludlow CL, Gaudet R, Houlden H, Reilly MM, Fischbeck KH, Sumner CJ, Timmerman V, Jordanova A, Jonghe PD (2010) Dominant mutations in the cation channel gene transient receptor potential vanilloid 4 cause an unusual spectrum of neuropathies. Brain 133:1798–1809

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants-in-aid for scientific research (22590291). We would like to thank Shigematsu for helpful comment and photo.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suzuki, M., Mizuno, A. (2012). The Molecular Mechanism of Multifunctional Mechano-Gated Channel TRPV4. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_4

Download citation

Publish with us

Policies and ethics