Skip to main content

The Role of the Primary Cilium in Chondrocyte Response to Mechanical Loading

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

Abstract

Articular cartilage, like many other living tissues, experiences a complex physiological mechanical loading environment which regulates cell function and tissue homeostasis through a process of mechanotransduction. The underlying signalling pathways and mechanotransduction mechanisms are poorly understood but recent studies point to the involvement of a fascinating and previously over looked cellular organelle called the primary cilium. In other cell types, including epithelial cells and osteocytes, primary cilia have been shown to function as mechanoreceptors. This appears to involve deflection of the cilium in response to fluid shear forces which then activates calcium signalling pathways. In this chapter we examine the structure and function of the primary cilium and its potential role in mechanotransduction in articular chondrocytes. In particular we review exciting recent studies which suggest that the primary cilium mediates chondrocyte mechanotransduction through regulation of purinergic calcium signalling leading to changes in extracellular matrix synthesis. Furthermore we examine how other cilia-mediated mechanotransduction pathways, most notably hedgehog signalling, are also regulated by mechanical forces thereby controlling cell proliferation and tissue development. Finally we describe the regulation of primary cilia structure and how mechanical forces may influence the complex balance of cilia assembly and disassembly leading to alterations in cilia function. In summary this chapter explores the rapidly evolving area of primary cilia and their response to mechanical forces with a particular focus on articular cartilage for which mechanical loading is critical for homeostasis and functionality. Understanding the role of the primary cilium in mechanobiology will aid the development of novel therapeutic strategies for pathologies, such as osteoarthritis, that involve disruption of primary cilia function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdul-Majeed S, Moloney BC, Nauli SM (2011) Mechanisms regulating cilia growth and cilia function in endothelial cells. Cell Mol Life Sci 69:165–173

    Article  PubMed  CAS  Google Scholar 

  • Albrecht-Buehler G, Bushnell A (1980) The ultrastructure of primary cilia in quiescent 3T3 cells. Exp Cell Res 126:427–437

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG (1972) The three-dimensional structure of the basal body from the rhesus monkey oviduct. J Cell Biol 54:246–265

    Article  CAS  PubMed  Google Scholar 

  • Athar M, Tang X, Lee JL, Kopelovich L, Kim AL (2006) Hedgehog signalling in skin development and cancer. Exp Dermatol 15:667–677

    Article  CAS  PubMed  Google Scholar 

  • Berbari NF, O'Connor AK, Haycraft CJ, Yoder BK (2009) The primary cilium as a complex signaling center. Curr Biol 19:R526–R535

    Article  CAS  PubMed  Google Scholar 

  • Berman SA, Wilson NF, Haas NA, Lefebvre PA (2003) A novel MAP kinase regulates flagellar length in Chlamydomonas. Curr Biol 13:1145–1149

    Article  CAS  PubMed  Google Scholar 

  • Besschetnova TY, Kolpakova-Hart E, Guan Y, Zhou J, Olsen BR, Shah JV (2010) Identification of signaling pathways regulating primary cilium length and flow-mediated adaptation. Curr Biol 20:182–187

    Article  CAS  PubMed  Google Scholar 

  • Bishop GA, Berbari NF, Lewis J, Mykytyn K (2007) Type III adenylyl cyclase localizes to primary cilia throughout the adult mouse brain. J Comp Neurol 505:562–571

    Article  PubMed  Google Scholar 

  • Cao M, Li G, Pan J (2009) Regulation of cilia assembly, disassembly, and length by protein phosphorylation. Methods Cell Biol 94:333–346

    Article  CAS  PubMed  Google Scholar 

  • Chang CF, Ramaswamy G, Serra R (2012) Depletion of primary cilia in articular chondrocytes results in reduced Gli3 repressor to activator ratio, increased Hedgehog signaling, and symptoms of early osteoarthritis. Osteoarthritis Cartilage 20:152–161

    Article  PubMed  Google Scholar 

  • Chowdhury TT, Knight MM (2006) Purinergic pathway suppresses the release of.NO and stimulates proteoglycan synthesis in chondrocyte/agarose constructs subjected to dynamic compression. J Cell Physiol 209:845–853

    Article  CAS  PubMed  Google Scholar 

  • Christensen ST, Pedersen SF, Satir P, Veland IR, Schneider L (2008) The primary cilium coordinates signaling pathways in cell cycle control and migration during development and tissue repair. Curr Top Dev Biol 85:261–301

    Article  CAS  PubMed  Google Scholar 

  • Christensen ST, Clement CA, Satir P, Pedersen LB (2012) Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol 226:172–184

    Article  CAS  PubMed  Google Scholar 

  • Cohen MM Jr (2010) Hedgehog signaling update. Am J Med Genet A 152A:1875–1914

    Article  CAS  PubMed  Google Scholar 

  • Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V, Chen MH, Chuang PT, Reiter JF (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10:70–76

    Article  CAS  PubMed  Google Scholar 

  • Cruz C, Ribes V, Kutejova E, Cayuso J, Lawson V, Norris D, Stevens J, Davey M, Blight K, Bangs F, Mynett A, Hirst E, Chung R, Balaskas N, Brody SL, Marti E, Briscoe J (2010) Foxj1 regulates floor plate cilia architecture and modifies the response of cells to sonic hedgehog signalling. Development 137:4271–4282

    Article  CAS  PubMed  Google Scholar 

  • D’Andrea P, Calabrese A, Capozzi I, Grandolfo M, Tonon R, Vittur F (2000) Intercellular Ca2+ waves in mechanically stimulated articular chondrocytes. Biorheology 37:75–83

    Google Scholar 

  • Dalagiorgou G, Basdra EK, Papavassiliou AG (2010) Polycystin-1: function as a mechanosensor. Int J Biochem Cell Biol 42:1610–1613

    Article  CAS  PubMed  Google Scholar 

  • Davenport JR, Yoder BK (2005) An incredible decade for the primary cilium: a look at a once-forgotten organelle. Am J Physiol Renal Physiol 289:1159–1169

    Article  CAS  Google Scholar 

  • Dawe HR, Farr H, Gull K (2007) Centriole/basal body morphogenesis and migration during ciliogenesis in animal cells. J Cell Sci 120:7–15

    Article  CAS  PubMed  Google Scholar 

  • Day TF, Yang Y (2008) Wnt and hedgehog signaling pathways in bone development. J Bone Joint Surg Am 90(Suppl 1):19–24

    Article  PubMed  Google Scholar 

  • Erickson GR, Alexopoulos LG, Guilak F (2001) Hyper-osmotic stress induces volume change and calcium transients in chondrocytes by transmembrane, phospholipid, and G-protein pathways. J Biomech 34:1527–1535

    Google Scholar 

  • Ehlen HW, Buelens LA, Vortkamp A (2006) Hedgehog signaling in skeletal development. Birth Defects Res C Embryo Today 78:267–279

    Article  CAS  PubMed  Google Scholar 

  • Edlich M, Yellowley CE, Jacobs CR, Donahue HJ (2004) Cycle number and waveform of fluid flow affect bovine articular chondrocytes Biorheology 41:315–322

    Google Scholar 

  • Edlich M, Yellowley CE, Jacobs CR, Donahue HJ (2001) Oscillating fluid flow regulates cytosolic calcium concentration in bovine articular chondrocytes. J Biomech 34:59–65

    Google Scholar 

  • Farge E (2011) Mechanotransduction in development. Curr Top Dev Biol 95:243–265

    Article  PubMed  Google Scholar 

  • Farnum CE, Wilsman NJ (2011) Orientation of Primary Cilia of Articular Chondrocytes in Three-Dimensional Space. Anat Rec (Hoboken) 294(3):533–549

    Article  Google Scholar 

  • Frost HM (1987) The mechanostat: a proposed pathogenic mechanism of osteoporoses and the bone mass effects of mechanical and nonmechanical agents. Bone Miner 2:73–85

    CAS  PubMed  Google Scholar 

  • Garcia M, Knight MM (2010) Cyclic loading opens hemichannels to release ATP as part of a chondrocyte mechanotransduction pathway. J Orthop Res 28:510–515

    CAS  PubMed  Google Scholar 

  • Garcia-Gonzalo FR, Corbit KC, Sirerol-Piquer MS, Ramaswami G, Otto EA, Noriega TR, Seol AD, Robinson JF, Bennett CL, Josifova DJ, Garcia-Verdugo JM, Katsanis N, Hildebrandt F, Reiter JF (2011) A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet 43:776–784

    Article  CAS  PubMed  Google Scholar 

  • Gerdes JM, Katsanis N (2008) Ciliary function and Wnt signal modulation. Curr Top Dev Biol 85:175–195

    Article  CAS  PubMed  Google Scholar 

  • Gerdes JM, Davis EE, Katsanis N (2009) The vertebrate primary cilium in development, homeostasis, and disease. Cell 137:32–45

    Article  CAS  PubMed  Google Scholar 

  • Gilula NB, Satir P (1972) The ciliary necklace. A ciliary membrane specialization. J Cell Biol 53:494–509

    Article  CAS  PubMed  Google Scholar 

  • Guan YJ, Yang X, Wei L, Chen Q (2011) MiR-365: a mechanosensitive microRNA stimulates chondrocyte differentiation through targeting histone deacetylase 4. FASEB J

    Google Scholar 

  • Guilak F, Ratcliffe A, Mow VC (1995) Chondrocyte deformation and local tissue strain in articular cartilage: a confocal microscopy study. J Orthop Res 13:410–421

    Article  CAS  PubMed  Google Scholar 

  • Guilak F, Zell RA, Erickson GR, Grande DA, Rubin CT, McLeod KJ, Donahue HJ (1999) Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride. J Orthop Res 17:421–429

    Google Scholar 

  • Hagiwara H, Aoki T, Ohwada N, Fujimoto T (1997) Development of striated rootlets during ciliogenesis in the human oviduct epithelium. Cell Tissue Res 290:39–42

    Article  CAS  PubMed  Google Scholar 

  • Handel M, Schulz S, Stanarius A, Schreff M, Erdtmann-Vourliotis M, Schmidt H, Wolf G, Hollt V (1999) Selective targeting of somatostatin receptor 3 to neuronal cilia. Neuroscience 89:909–926

    Article  CAS  PubMed  Google Scholar 

  • Haycraft CJ, Serra R (2008) Cilia involvement in patterning and maintenance of the skeleton. Curr Top Dev Biol 85:303–332

    Article  CAS  PubMed  Google Scholar 

  • Haycraft CJ, Banizs B, Aydin-Son Y, Zhang Q, Michaud EJ, Yoder BK (2005) Gli2 and Gli3 localize to cilia and require the intraflagellar transport protein polaris for processing and function. PLoS Genet 1:e53

    Article  PubMed  CAS  Google Scholar 

  • Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R, Yoder BK (2007) Intraflagellar transport is essential for endochondral bone formation. Development 134:307–316

    Article  CAS  PubMed  Google Scholar 

  • hjTang GH, Rabie AB, Hagg U (2004) Indian hedgehog: a mechanotransduction mediator in condylar cartilage. J Dent Res 83:434–438

    Article  Google Scholar 

  • Huangfu D, Anderson KV (2005) Cilia and Hedgehog responsiveness in the mouse. Proc Natl Acad Sci USA 102:11325–11330

    Article  CAS  PubMed  Google Scholar 

  • Huangfu D, Liu A, Rakeman AS, Murcia NS, Niswander L, Anderson KV (2003) Hedgehog signalling in the mouse requires intraflagellar transport proteins. Nature 426:83–87

    Article  CAS  PubMed  Google Scholar 

  • Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    Article  CAS  PubMed  Google Scholar 

  • Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817

    Article  CAS  PubMed  Google Scholar 

  • Jensen CG, Jensen LC, Rieder CL (1979) The occurrence and structure of primary cilia in a subline of Potorous tridactylus. Exp Cell Res 123:444–449

    Article  CAS  PubMed  Google Scholar 

  • Jensen CG, Poole CA, McGlashan SR, Marko M, Issa ZI, Vujcich KV, Bowser SS (2004) Ultrastructural, tomographic and confocal imaging of the chondrocyte primary cilium in situ. Cell Biol Int 28:101–110

    Article  CAS  PubMed  Google Scholar 

  • Jones TJ, Adapala RK, Geldenhuys WJ, Bursley C, AbouAlaiwi WA, Nauli SM, Thodeti CK (2012) Primary cilia regulates the directional migration and barrier integrity of endothelial cells through the modulation of hsp27 dependent actin cytoskeletal organization. J Cell Physiol 227:70–76

    Article  CAS  PubMed  Google Scholar 

  • Kanbe K, Yang X, Wei L, Sun C, Chen Q (2007) Pericellular matrilins regulate activation of chondrocytes by cyclic load-induced matrix deformation. J Bone Miner Res 22:318–328

    Article  CAS  PubMed  Google Scholar 

  • Kaushik AP, Martin JA, Zhang Q, Sheffield VC, Morcuende JA (2009) Cartilage abnormalities associated with defects of chondrocytic primary cilia in Bardet-Biedl syndrome mutant mice. J Orthop Res 27:1093–1099

    Article  PubMed  Google Scholar 

  • Kim E, Arnould T, Sellin LK, Benzing T, Fan MJ, Gruning W, Sokol SY, Drummond I, Walz G (1999) The polycystic kidney disease 1 gene product modulates Wnt signaling. J Biol Chem 274:4947–4953

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee JE, Heynen-Genel S, Suyama E, Ono K, Lee K, Ideker T, Aza-Blanc P, Gleeson JG (2010) Functional genomic screen for modulators of ciliogenesis and cilium length. Nature 464:1048–1051

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13:351–360

    Article  CAS  PubMed  Google Scholar 

  • King PJ, Guasti L, Laufer E (2008) Hedgehog signalling in endocrine development and disease. J Endocrinol 198:439–450

    Article  CAS  PubMed  Google Scholar 

  • Kinumatsu T, Shibukawa Y, Yasuda T, Nagayama M, Yamada S, Serra R, Pacifici M, Koyama E (2011) TMJ development and growth require primary cilia function. J Dent Res 90:988–994

    Article  CAS  PubMed  Google Scholar 

  • Kinzel D, Boldt K, Davis EE, Burtscher I, Trumbach D, Diplas B, Attie-Bitach T, Wurst W, Katsanis N, Ueffing M, Lickert H (2010) Pitchfork regulates primary cilia disassembly and left-right asymmetry. Dev Cell 19:66–77

    Article  CAS  PubMed  Google Scholar 

  • Knight MM, McGlashan SR, Garcia M, Jensen CG, Poole CA (2009) Articular chondrocytes express connexin 43 hemichannels and P2 receptors – a putative mechanoreceptor complex involving the primary cilium? J Anat 214:275–283

    Article  CAS  PubMed  Google Scholar 

  • Kolahi KS, Mofrad MR (2010) Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med 2:625–639

    Article  CAS  PubMed  Google Scholar 

  • Kono T, Nishikori T, Kataoka H, Uchio Y, Ochi M, Enomoto K (2006) Spontaneous oscillation and mechanically induced calcium waves in chondrocytes. Cell Biochem Funct 24:103–111

    Google Scholar 

  • Krock BL, Mills-Henry I, Perkins BD (2009) Retrograde intraflagellar transport by cytoplasmic dynein-2 is required for outer segment extension in vertebrate photoreceptors but not arrestin translocation. Invest Ophthalmol Vis Sci 50:5463–5471

    Article  PubMed  Google Scholar 

  • Lal M, Song X, Pluznick JL, Di Giovanni V, Merrick DM, Rosenblum ND, Chauvet V, Gottardi CJ, Pei Y, Caplan MJ (2008) Polycystin-1 C-terminal tail associates with beta-catenin and inhibits canonical Wnt signaling. Hum Mol Genet 17:3105–3117

    Article  CAS  PubMed  Google Scholar 

  • Le AX, Miclau T, Hu D, Helms JA (2001) Molecular aspects of healing in stabilized and non-stabilized fractures. J Orthop Res 19:78–84

    Article  CAS  PubMed  Google Scholar 

  • Li A, Saito M, Chuang JZ, Tseng YY, Dedesma C, Tomizawa K, Kaitsuka T, Sung CH (2011) Ciliary transition zone activation of phosphorylated Tctex-1 controls ciliary resorption, S-phase entry and fate of neural progenitors. Nat Cell Biol 13:402–411

    Article  CAS  PubMed  Google Scholar 

  • Lin AC, Seeto BL, Bartoszko JM, Khoury MA, Whetstone H, Ho L, Hsu C, Ali AS, Alman BA (2009) Modulating hedgehog signaling can attenuate the severity of osteoarthritis. Nat Med 15:1421–1425

    Article  CAS  PubMed  Google Scholar 

  • Lopes SS, Lourenco R, Pacheco L, Moreno N, Kreiling J, Saude L (2010) Notch signalling regulates left-right asymmetry through ciliary length control. Development 137:3625–3632

    Article  CAS  PubMed  Google Scholar 

  • Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N, Kinter MT, Kane ME, Obara T, Weimbs T (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69

    Article  CAS  PubMed  Google Scholar 

  • Lu CJ, Du H, Wu J, Jansen DA, Jordan KL, Xu N, Sieck GC, Qian Q (2008) Non-random distribution and sensory functions of primary cilia in vascular smooth muscle cells. Kidney Blood Press Res 31:171–184

    Article  CAS  PubMed  Google Scholar 

  • Malone AM, Anderson CT, Tummala P, Kwon RY, Johnston TR, Stearns T, Jacobs CR (2007) Primary cilia mediate mechanosensing in bone cells by a calcium-independent mechanism. Proc Natl Acad Sci USA 104:13325–13330

    Article  CAS  PubMed  Google Scholar 

  • Massinen S, Hokkanen ME, Matsson H, Tammimies K, Tapia-Paez I, Dahlstrom-Heuser V, Kuja-Panula J, Burghoorn J, Jeppsson KE, Swoboda P, Peyrard-Janvid M, Toftgard R, Castren E, Kere J (2011) Increased expression of the dyslexia candidate gene DCDC2 affects length and signaling of primary cilia in neurons. PLoS One 6:e20580

    Article  CAS  PubMed  Google Scholar 

  • Masyuk AI, Masyuk TV, Splinter PL, Huang BQ, Stroope AJ, LaRusso NF (2006) Cholangiocyte cilia detect changes in luminal fluid flow and transmit them into intracellular Ca2   +  and cAMP signaling. Gastroenterology 131:911–920

    Article  CAS  PubMed  Google Scholar 

  • May-Simera HL, Kai M, Hernandez V, Osborn DP, Tada M, Beales PL (2010) Bbs8, together with the planar cell polarity protein Vangl2, is required to establish left-right asymmetry in zebrafish. Dev Biol 345:215–225

    Article  CAS  PubMed  Google Scholar 

  • May SR, Ashique AM, Karlen M, Wang B, Shen Y, Zarbalis K, Reiter J, Ericson J, Peterson AS (2005) Loss of the retrograde motor for IFT disrupts localization of Smo to cilia and prevents the expression of both activator and repressor functions of Gli. Dev Biol 287:378–389

    Article  CAS  PubMed  Google Scholar 

  • McGlashan SR, Haycraft CJ, Jensen CG, Yoder BK, Poole CA (2007) Articular cartilage and growth plate defects are associated with chondrocyte cytoskeletal abnormalities in Tg737orpk mice lacking the primary cilia protein polaris. Matrix Biol 26:234–246

    Article  CAS  PubMed  Google Scholar 

  • McGlashan SR, Cluett EC, Jensen CG, Poole CA (2008) Primary cilia in osteoarthritic chondrocytes: from chondrons to clusters. Dev Dyn 237:2013–2020

    Article  CAS  PubMed  Google Scholar 

  • McGlashan SR, Knight MM, Chowdhury TT, Joshi P, Jensen CG, Kennedy S, Poole CA (2010) Mechanical loading modulates chondrocyte primary cilia incidence and length. Cell Biol Int 34:441–446

    Article  PubMed  Google Scholar 

  • Milenkovic L, Scott MP, Rohatgi R (2009) Lateral transport of Smoothened from the plasma membrane to the membrane of the cilium. J Cell Biol 187:365–374

    Article  CAS  PubMed  Google Scholar 

  • Millward-Sadler SJ, Salter DM (2004) Integrin-dependent signal cascades in chondrocyte mechanotransduction. Ann Biomed Eng 32:435–446

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi K, Kasahara K, Miyazaki I, Asanuma M (2009) Lithium treatment elongates primary cilia in the mouse brain and in cultured cells. Biochem Biophys Res Commun 388:757–762

    Article  CAS  PubMed  Google Scholar 

  • Mizuno S (2005) A novel method for assessing effects of hydrostatic fluid pressure on intracellular calcium: a study with bovine articular chondrocytes. Am J Physiol Cell Physiol 288:C329–337

    Google Scholar 

  • Mokrzan EM, Lewis JS, Mykytyn K (2007) Differences in renal tubule primary cilia length in a mouse model of Bardet-Biedl syndrome. Nephron Exp Nephrol 106:e88–e96

    Article  PubMed  Google Scholar 

  • Morrow D, Sweeney C, Birney YA, Guha S, Collins N, Cummins PM, Murphy R, Walls D, Redmond EM, Cahill PA (2007) Biomechanical regulation of hedgehog signaling in vascular smooth muscle cells in vitro and in vivo. Am J Physiol Cell Physiol 292:C488–C496

    Article  CAS  PubMed  Google Scholar 

  • Nagase T, Nagase M, Machida M, Fujita T (2008) Hedgehog signalling in vascular development. Angiogenesis 11:71–77

    Article  CAS  PubMed  Google Scholar 

  • Nauli SM, Jin X, Hierck BP (2011) The mechanosensory role of primary cilia in vascular hypertension. Int J Vasc Med 2011:376281

    PubMed  Google Scholar 

  • Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AE, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J (2003) Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 33:129–137

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458:651–654

    Article  CAS  PubMed  Google Scholar 

  • Ng TC, Chiu KW, Rabie AB, Hagg U (2006) Repeated mechanical loading enhances the expression of Indian hedgehog in condylar cartilage. Front Biosci 11:943–948

    Article  CAS  PubMed  Google Scholar 

  • Nguyen RL, Tam LW, Lefebvre PA (2005) The LF1 gene of Chlamydomonas reinhardtii encodes a novel protein required for flagellar length control. Genetics 169:1415–1424

    Article  CAS  PubMed  Google Scholar 

  • Nowlan NC, Murphy P, Prendergast PJ (2008a) A dynamic pattern of mechanical stimulation promotes ossification in avian embryonic long bones. J Biomech 41:249–258

    Article  Google Scholar 

  • Nowlan NC, Prendergast PJ, Murphy P (2008b) Identification of mechanosensitive genes during embryonic bone formation. PLoS Comput Biol 4:e1000250

    Article  CAS  Google Scholar 

  • Ohashi T, Hagiwara M, Bader DL, Knight MM (2006) Intracellular mechanics and mechanotransduction associated with chondrocyte deformation during pipette aspiration. Biorheology 43:201–214

    Google Scholar 

  • Ostrowski LE, Blackburn K, Radde KM, Moyer MB, Schlatzer DM, Moseley A, Boucher RC (2002) A proteomic analysis of human cilia: identification of novel components. Mol Cell Proteomics 1:451–465

    Article  CAS  PubMed  Google Scholar 

  • Ou Y, Ruan Y, Cheng M, Moser JJ, Rattner JB, Van Der Hoorn FA (2009) Adenylate cyclase regulates elongation of mammalian primary cilia. Exp Cell Res 315:2802–2817

    Article  CAS  PubMed  Google Scholar 

  • Palmer KJ, MacCarthy-Morrogh L, Smyllie N, Stephens DJ (2011) A role for Tctex-1 (DYNLT1) in controlling primary cilium length. Eur J Cell Biol 90:865–871

    Article  CAS  PubMed  Google Scholar 

  • Pan J, Snell W (2007) The primary cilium: keeper of the key to cell division. Cell 129:1255–1257

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, Witman GB (2003) The vertebrate primary cilium is a sensory organelle. Curr Opin Cell Biol 15:105–110

    Article  CAS  PubMed  Google Scholar 

  • Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL, Witman GB (2002) Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol 12:R378–R380

    Article  CAS  PubMed  Google Scholar 

  • Pedersen LB, Rosenbaum JL (2008) Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol 85:23–61

    Article  CAS  PubMed  Google Scholar 

  • Perrone CA, Tritschler D, Taulman P, Bower R, Yoder BK, Porter ME (2003) A novel dynein light intermediate chain colocalizes with the retrograde motor for intraflagellar transport at sites of axoneme assembly in chlamydomonas and Mammalian cells. Mol Biol Cell 14:2041–2056

    Article  CAS  PubMed  Google Scholar 

  • Pingguan-Murphy B, Lee DA, Bader DL, Knight MM (2005) Activation of chondrocytes calcium signalling by dynamic compression is independent of number of cycles. Arch Biochem Biophys 444:45–51

    Article  CAS  PubMed  Google Scholar 

  • Pingguan-Murphy B, El-Azzeh M, Bader DL, Knight MM (2006) Cyclic compression of chondrocytes modulates a purinergic calcium signalling pathway in a strain rate- and frequency-dependent manner. J Cell Physiol 209:389–397

    Article  CAS  PubMed  Google Scholar 

  • Poole CA, Flint MH, Beaumont BW (1985) Analysis of the morphology and function of primary cilia in connective tissues: a cellular cybernetic probe? Cell Motil 5:175–193

    Article  CAS  PubMed  Google Scholar 

  • Poole CA, Jensen CG, Snyder JA, Gray CG, Hermanutz VL, Wheatley DN (1997) Confocal analysis of primary cilia structure and colocalization with the Golgi apparatus in chondrocytes and aortic smooth muscle cells. Cell Biol Int 21:483–494

    Article  CAS  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2001) Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol 184:71–79

    Article  CAS  PubMed  Google Scholar 

  • Praetorius HA, Spring KR (2003) The renal cell primary cilium functions as a flow sensor. Curr Opin Nephrol Hypertens 12:517–520

    Article  PubMed  Google Scholar 

  • Prodromou NV, Thompson C, Osborn DP, Kogger KF, Asworth R, Beales PL, Knight MM, Chapple JP (2012) Heat shock induces rapid resorption of primary cilia. J Cell Sci (Epub)

    Google Scholar 

  • Pugacheva EN, Jablonski SA, Hartman TR, Henske EP, Golemis EA (2007) HEF1-dependent Aurora A activation induces disassembly of the primary cilium. Cell 129:1351–1363

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Diener DR, Geimer S, Cole DG, Rosenbaum JL (2004) Intraflagellar transport (IFT) cargo: IFT transports flagellar precursors to the tip and turnover products to the cell body. J Cell Biol 164:255–266

    Article  CAS  PubMed  Google Scholar 

  • Rabie AB, Al-Kalaly A (2008) Does the degree of advancement during functional appliance therapy matter? Eur J Orthod 30:274–282

    Article  PubMed  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33:543–571

    Article  CAS  PubMed  Google Scholar 

  • Robert A, Margall-Ducos G, Guidotti JE, Bregerie O, Celati C, Brechot C, Desdouets C (2007) The intraflagellar transport component IFT88/polaris is a centrosomal protein regulating G1-S transition in non-ciliated cells. J Cell Sci 120:628–637

    Article  CAS  PubMed  Google Scholar 

  • Roberts SR, Knight MM, Lee DA, Bader DL (2001) Mechanical compression influences intracellular Ca2+ signaling in chondrocytes seeded in agarose constructs. J Appl Physiol 90:1385–1391

    Google Scholar 

  • Rohatgi R, Milenkovic L, Scott MP (2007) Patched1 regulates hedgehog signaling at the primary cilium. Science 317:372–376

    Article  CAS  PubMed  Google Scholar 

  • Rondanino C, Poland PA, Kinlough CL, Li H, Rbaibi Y, Myerburg MM, Al-bataineh MM, Kashlan OB, Pastor-Soler NM, Hallows KR, Weisz OA, Apodaca G, Hughey RP (2011) Galectin-7 modulates the length of the primary cilia and wound repair in polarized kidney epithelial cells. Am J Physiol Renal Physiol 301:F622–F633

    Article  CAS  PubMed  Google Scholar 

  • Rosenbaum J (2003) Organelle size regulation: length matters. Curr Biol 13:R506–R507

    Article  CAS  PubMed  Google Scholar 

  • Schafer JC, Haycraft CJ, Thomas JH, Yoder BK, Swoboda P (2003) XBX-1 encodes a dynein light intermediate chain required for retrograde intraflagellar transport and cilia assembly in Caenorhabditis elegans. Mol Biol Cell 14:2057–2070

    Article  CAS  PubMed  Google Scholar 

  • Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P, Christensen ST (2005) PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol 15:1861–1866

    Article  CAS  PubMed  Google Scholar 

  • Schneider L, Cammer M, Lehman J, Nielsen SK, Guerra CF, Veland IR, Stock C, Hoffmann EK, Yoder BK, Schwab A, Satir P, Christensen ST (2010) Directional cell migration and chemotaxis in wound healing response to PDGF-AA are coordinated by the primary cilium in fibroblasts. Cell Physiol Biochem 25:279–292

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MA (2010) Integrins and extracellular matrix in mechanotransduction. Cold Spring Harb Perspect Biol 2:a005066

    Article  CAS  PubMed  Google Scholar 

  • Schwartz MA, DeSimone DW (2008) Cell adhesion receptors in mechanotransduction. Curr Opin Cell Biol 20:551–556

    Article  CAS  PubMed  Google Scholar 

  • Shao YY, Wang L, Welter JF, Ballock RT (2011) Primary cilia modulate Ihh signal transduction in response to hydrostatic loading of growth plate chondrocytes. Bone 50(1):79–84

    Article  PubMed  CAS  Google Scholar 

  • Sharma N, Kosan ZA, Stallworth JE, Berbari NF, Yoder BK (2011) Soluble levels of cytosolic tubulin regulate ciliary length control. Mol Biol Cell 22:806–816

    Article  CAS  PubMed  Google Scholar 

  • Shivashankar GV (2011) Mechanosignaling to the cell nucleus and gene regulation. Annu Rev Biophys 40:361–378

    Article  CAS  PubMed  Google Scholar 

  • Tam LW, Dentler WL, Lefebvre PA (2003) Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas. J Cell Biol 163:597–607

    Article  CAS  PubMed  Google Scholar 

  • Tam LW, Wilson NF, Lefebvre PA (2007) A CDK-related kinase regulates the length and assembly of flagella in Chlamydomonas. J Cell Biol 176:819–829

    Article  CAS  PubMed  Google Scholar 

  • Teilmann SC, Christensen ST (2005) Localization of the angiopoietin receptors Tie-1 and Tie-2 on the primary cilia in the female reproductive organs. Cell Biol Int 29:340–346

    Article  CAS  PubMed  Google Scholar 

  • Teilmann SC, Byskov AG, Pedersen PA, Wheatley DN, Pazour GJ, Christensen ST (2005) Localization of transient receptor potential ion channels in primary and motile cilia of the female murine reproductive organs. Mol Reprod Dev 71:444–452

    Article  CAS  PubMed  Google Scholar 

  • Thiel C, Kessler K, Giessl A, Dimmler A, Shalev SA, von der Haar S, Zenker M, Zahnleiter D, Stoss H, Beinder E, Abou Jamra R, Ekici AB, Schroder-Kress N, Aigner T, Kirchner T, Reis A, Brandstatter JH, Rauch A (2011) NEK1 mutations cause short-rib polydactyly syndrome type majewski. Am J Hum Genet 88:106–114

    Article  CAS  PubMed  Google Scholar 

  • Tran PV, Haycraft CJ, Besschetnova TY, Turbe-Doan A, Stottmann RW, Herron BJ, Chesebro AL, Qiu H, Scherz PJ, Shah JV, Yoder BK, Beier DR (2008) THM1 negatively modulates mouse sonic hedgehog signal transduction and affects retrograde intraflagellar transport in cilia. Nat Genet 40:403–410

    Article  CAS  PubMed  Google Scholar 

  • Urban JP (1994) The chondrocyte: a cell under pressure. Br J Rheumatol 33:901–908

    Article  CAS  PubMed  Google Scholar 

  • Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  CAS  PubMed  Google Scholar 

  • Veland IR, Awan A, Pedersen LB, Yoder BK, Christensen ST (2009) Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol 111:39–53

    Article  CAS  Google Scholar 

  • Verghese E, Ricardo SD, Weidenfeld R, Zhuang J, Hill PA, Langham RG, Deane JA (2009) Renal primary cilia lengthen after acute tubular necrosis. J Am Soc Nephrol 20:2147–2153

    Article  PubMed  Google Scholar 

  • Verghese E, Zhuang J, Saiti D, Ricardo SD, Deane JA (2011) In vitro investigation of renal epithelial injury suggests that primary cilium length is regulated by hypoxia-inducible mechanisms. Cell Biol Int 35:909–913

    Article  PubMed  Google Scholar 

  • Verhey KJ, Gaertig J (2007) The tubulin code. Cell Cycle 6:2152–2160

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Luo Y, Wilson PD, Witman GB, Zhou J (2004) The autosomal recessive polycystic kidney disease protein is localized to primary cilia, with concentration in the basal body area. J Am Soc Nephrol 15:592–602

    Article  PubMed  Google Scholar 

  • Wann AK, Zuo N, Haycraft CJ, Jensen CG, Poole CA, McGlashan SR, Knight MM (2012) Primary cilia mediate mechanotransduction through control of ATP-induced Ca2   +  signaling in compressed chondrocytes. FASEB J 26:1663–1671

    Google Scholar 

  • Wann AK and Knight MM (2012) Primary cilia elongation in response to interleukin-1 mediates the inflammatory response. Cell Mol Life Sci 69:2967–2977

    Google Scholar 

  • Waters AM, Beales PL (2011) Ciliopathies: an expanding disease spectrum. Pediatr Nephrol 26:1039–1056

    Article  PubMed  Google Scholar 

  • Westermann S, Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4:938–947

    Article  CAS  PubMed  Google Scholar 

  • Wilkins RJ, Fairfax TP, Davies ME, Muzyamba MC, Gibson JS (2003) Homeostasis of intracellular Ca2+ in equine chondrocytes: response to hypotonic shock. Equine Vet J. 35:439–443

    Google Scholar 

  • Williams CL, Li C, Kida K, Inglis PN, Mohan S, Semenec L, Bialas NJ, Stupay RM, Chen N, Blacque OE, Yoder BK, Leroux MR (2011) MKS and NPHP modules cooperate to establish basal body/transition zone membrane associations and ciliary gate function during ciliogenesis. J Cell Biol 192:1023–1041

    Article  CAS  PubMed  Google Scholar 

  • Wong SY, Reiter JF (2008) The primary cilium at the crossroads of mammalian hedgehog signaling. Curr Top Dev Biol 85:225–260

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Zhang Y, Chen Q (2001) Indian hedgehog is an essential component of mechanotransduction complex to stimulate chondrocyte proliferation. J Biol Chem 276:35290–35296

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin M. Knight .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wann, A., Thompson, C., Knight, M. (2012). The Role of the Primary Cilium in Chondrocyte Response to Mechanical Loading. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_15

Download citation

Publish with us

Policies and ethics