Skip to main content

Lipid-Mediated Mechanisms Involved in the Mechanical Activation of TRPC6 and TRPV4 Channels in the Vascular Tone Regulation

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

  • 834 Accesses

Abstract

The transient receptor potential (TRP) proteins form a large Ca2+-permeable nonselective cation channel superfamily activated by physicochemical stimuli, and participate in a wide array of biological functions including sensory signal transduction. Recent investigations have disclosed that many of TRP channels expressed in the cardiovascular system (CVS) are activated by mechanical stresses operating therein such as membrane stretch, hypoosmolarity and shear stress. Although mechanisms proposed for mechanical signal transduction are diverse, accumulating evidence suggests that lipid mediators derived from phospholipase C (PLC)- and phospholipase A2 (PLA2)-dependent pathways may play central roles in the activation and regulation of these TRP channels. In this review, we focus on the lipid-mediated regulation of two TRP channels abundantly expressed in the CVS, i.e. TRPC6 and TRPV4, with particular interest in the synergistic interaction between receptor-mediated and mechanical stimulations, and discuss about their complex functional antagonism in vascular tone and blood pressure regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bae C, Sachs F, Gottlieb PA (2011) The mechanosensitive ion channel Piezo1 is inhibited by the peptide GsMTx4. Biochemistry 50(29):6295–6300

    PubMed  CAS  Google Scholar 

  • Basora N, Boulay G, Bilodeau L, Rousseau E, Payet MD (2003) 20-hydroxyeicosatetraenoic acid (20-HETE) activates mouse TRPC6 channels expressed in HEK293 cells. J Biol Chem 278(34):31709–31716

    PubMed  CAS  Google Scholar 

  • Busse R, Fleming I (2003) Regulation of endothelium-derived vasoactive autacoid production by hemodynamic forces. Trends Pharmacol Sci 24(1):24–29

    PubMed  CAS  Google Scholar 

  • Buxton IL, Singer CA, Tichenor JN (2010) Expression of stretch-activated two-pore potassium channels in human myometrium in pregnancy and labor. PLoS One 5(8):e12372

    PubMed  Google Scholar 

  • Chen XZ, Li Q, Wu Y, Liang G, Lara CJ, Cantiello HF (2008) Submembraneous microtubule cytoskeleton: interaction of TRPP2 with the cell cytoskeleton. Febs J 275(19):4675–4683

    PubMed  CAS  Google Scholar 

  • Christensen AP, Corey DP (2007) TRP channels in mechanosensation: direct or indirect activation? Nat Rev Neurosci 8(7):510–521

    PubMed  CAS  Google Scholar 

  • Corry B, Martinac B (2008) Bacterial mechanosensitive channels: experiment and theory. Biochim Biophys Acta 1778(9):1859–1870

    PubMed  CAS  Google Scholar 

  • Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S, Petrus MJ et al (2010) Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330(6000):55–60

    PubMed  CAS  Google Scholar 

  • Dalrymple A, Mahn K, Poston L, Songu-Mize E, Tribe RM (2007) Mechanical stretch regulates TRPC expression and calcium entry in human myometrial smooth muscle cells. Mol Hum Reprod 13(3):171–179

    PubMed  CAS  Google Scholar 

  • Davis PF (2009) Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract 6(1):16–26

    Google Scholar 

  • Davis MJ, Hill MA (1999) Signaling mechanisms underlying the vascular myogenic response. Physiol Rev 79(2):387–423

    PubMed  CAS  Google Scholar 

  • Dedman A, Sharif-Naeini R, Folgering JH, Duprat F, Patel A, Honore E (2009) The mechano-gated K(2P) channel TREK-1. Eur Biophys J 38(3):293–303

    PubMed  CAS  Google Scholar 

  • Dietrich A, Mederos YSM, Gollasch M, Gross V, Storch U, Dubrovska G et al (2005) Increased vascular smooth muscle contractility in TRPC6-/- mice. Mol Cell Biol 25(16):6980–6989

    PubMed  CAS  Google Scholar 

  • Dietrich A, Chubanov V, Gudermann T (2010) Renal TRPathies. J Am Soc Nephrol 21(5):736–744

    PubMed  CAS  Google Scholar 

  • Drummond HA, Grifoni SC, Jernigan NL (2008) A new trick for an old dogma: ENaC proteins as mechanotransducers in vascular smooth muscle. Physiology (Bethesda) 23:23–31

    CAS  Google Scholar 

  • Falkenburger BH, Jensen JB, Dickson EJ, Suh BC, Hille B (2010) Phosphoinositides: lipid regulators of membrane proteins. J Physiol 588(Pt 17):3179–3185

    PubMed  CAS  Google Scholar 

  • Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM et al (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5′-6′-epoxyeicosatrienoic acid. J Cell Biol 181(1):143–155

    PubMed  CAS  Google Scholar 

  • Fleming I (2001) Cytochrome p450 and vascular homeostasis. Circ Res 89(9):753–762

    PubMed  CAS  Google Scholar 

  • Fleming I, Rueben A, Popp R, Fisslthaler B, Schrodt S, Sander A et al (2007) Epoxyeicosatrienoic acids regulate Trp channel dependent Ca2 + signaling and hyperpolarization in endothelial cells. Arterioscler Thromb Vasc Biol 27(12):2612–2618

    PubMed  CAS  Google Scholar 

  • Flockerzi V (2007) An introduction on TRP channels. Handb Exp Pharmacol 179:1–19

    PubMed  CAS  Google Scholar 

  • Garcia-Elias A, Lorenzo IM, Vicente R, Valverde MA (2008) IP3 receptor binds to and sensitizes TRPV4 channel to osmotic stimuli via a calmodulin-binding site. J Biol Chem 283(46):31284–31288

    PubMed  CAS  Google Scholar 

  • Gebremedhin D, Lange AR, Lowry TF, Taheri MR, Birks EK, Hudetz AG et al (2000) Production of 20-HETE and its role in autoregulation of cerebral blood flow. Circ Res 87(1):60–65

    PubMed  CAS  Google Scholar 

  • Gottlieb P, Folgering J, Maroto R, Raso A, Wood TG, Kurosky A et al (2008) Revisiting TRPC1 and TRPC6 mechanosensitivity. Pflugers Arch 455(6):1097–1103

    PubMed  CAS  Google Scholar 

  • Guinamard R, Demion M, Magaud C, Potreau D, Bois P (2006) Functional expression of the TRPM4 cationic current in ventricular cardiomyocytes from spontaneously hypertensive rats. Hypertension 48(4):587–594

    PubMed  CAS  Google Scholar 

  • Hamill OP, Martinac B (2001) Molecular basis of mechanotransduction in living cells. Physiol Rev 81(2):685–740

    PubMed  CAS  Google Scholar 

  • Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477(7365):495–498

    PubMed  CAS  Google Scholar 

  • Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T et al (2002) LTRPC2 Ca2+-permeable channel activated by changes in redox status confers susceptibility to cell death. Mol Cell 9(1):163–173

    PubMed  CAS  Google Scholar 

  • Harder DR, Lange AR, Gebremedhin D, Birks EK, Roman RJ (1997) Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue. J Vasc Res 34(3):237–243

    PubMed  CAS  Google Scholar 

  • Harder DR, Narayanan J, Gebremedhin D (2011) Pressure-induced myogenic tone and role of 20-HETE in mediating autoregulation of cerebral blood flow. Am J Physiol Heart Circ Physiol 300(5):H1557–1565

    PubMed  CAS  Google Scholar 

  • Hartmannsgruber V, Heyken WT, Kacik M, Kaistha A, Grgic I, Harteneck C et al (2007) Arterial response to shear stress critically depends on endothelial TRPV4 expression. PLoS ONE 2(9):e827

    PubMed  Google Scholar 

  • Heineke J, Molkentin JD (2006) Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat Rev Mol Cell Biol 7(8):589–600

    PubMed  CAS  Google Scholar 

  • Hilgemann DW, Feng S, Nasuhoglu C (2001) The complex and intriguing lives of PIP2 with ion channels and transporters. Sci STKE 2001(111):re19

    PubMed  CAS  Google Scholar 

  • Hill K, Schaefer M (2007) TRPA1 is differentially modulated by the amphipathic molecules trinitrophenol and chlorpromazine. J Biol Chem 282(10):7145–7153

    PubMed  CAS  Google Scholar 

  • Huber TB, Schermer B, Muller RU, Hohne M, Bartram M, Calixto A et al (2006) Podocin and MEC-2 bind cholesterol to regulate the activity of associated ion channels. Proc Natl Acad Sci USA 103(46):17079–17086

    PubMed  CAS  Google Scholar 

  • Hughes-Fulford M (2004) Lessons learned about spaceflight and cell biology experiments. J Gravit Physiol 11(1):105–109

    PubMed  Google Scholar 

  • Hwang SW, Cho H, Kwak J, Lee SY, Kang CJ, Jung J et al (2000) Direct activation of capsaicin receptors by products of lipoxygenases: endogenous capsaicin-like substances. Proc Natl Acad Sci USA 97(11):6155–6160

    PubMed  CAS  Google Scholar 

  • Ingber DE (2008) Tensegrity-based mechanosensing from macro to micro. Prog Biophys Mol Biol 97(2–3):163–179

    PubMed  Google Scholar 

  • Inoue R, Jensen LJ, Shi J, Morita H, Nishida M, Honda A et al (2006) Transient receptor potential channels in cardiovascular function and disease. Circ Res 99(2):119–131

    PubMed  CAS  Google Scholar 

  • Inoue R, Jensen LJ, Jian Z, Shi J, Hai L, Lurie AI et al (2009a) Synergistic activation of vascular TRPC6 channel by receptor and mechanical stimulation via phospholipase C/diacylglycerol and phospholipase A2/omega-hydroxylase/20-HETE pathways. Circ Res 104(12):1399–1409

    CAS  Google Scholar 

  • Inoue R, Jian Z, Kawarabayashi Y (2009b) Mechanosensitive TRP channels in cardiovascular pathophysiology. Pharmacol Ther 123(3):371–385

    CAS  Google Scholar 

  • Inoue R, Shi J, Jian Z, Imai Y (2010) Regulation of cardiovascular TRP channel functions along the NO-cGMP-PKG axis. Exp Rev Clin Pharmacol 3(3):347–360

    CAS  Google Scholar 

  • Johnson RJ, Feig DI, Nakagawa T, Sanchez-Lozada LG, Rodriguez-Iturbe B (2008) Pathogenesis of essential hypertension: historical paradigms and modern insights. J Hypertens 26(3):381–391

    PubMed  CAS  Google Scholar 

  • Kaide J, Wang MH, Wang JS, Zhang F, Gopal VR, Falck JR et al (2003) Transfection of CYP4A1 cDNA increases vascular reactivity in renal interlobar arteries. Am J Physiol Renal Physiol 284(1):F51–56

    PubMed  CAS  Google Scholar 

  • Kanzaki M, Zhang YQ, Mashima H, Li L, Shibata H, Kojima I (1999) Translocation of a calcium-permeable cation channel induced by insulin-like growth factor-I. Nat Cell Biol 1(3):165–170

    PubMed  CAS  Google Scholar 

  • Kohler R, Heyken WT, Heinau P, Schubert R, Si H, Kacik M et al (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26(7):1495–1502

    PubMed  Google Scholar 

  • Koitabashi N, Aiba T, Hesketh GG, Rowell J, Zhang M, Takimoto E et al (2010) Cyclic GMP/PKG-dependent inhibition of TRPC6 channel activity and expression negatively regulates cardiomyocyte NFAT activation Novel mechanism of cardiac stress modulation by PDE5 inhibition. J Mol Cell Cardiol 48(4):713–724

    PubMed  CAS  Google Scholar 

  • Kwan HY, Huang Y, Yao X (2004) Regulation of canonical transient receptor potential isoform 3 (TRPC3) channel by protein kinase G. Proc Natl Acad Sci USA 101(8):2625–2630

    PubMed  CAS  Google Scholar 

  • Kwan HY, Huang Y, Yao X (2006) Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 207(2):315–321

    PubMed  CAS  Google Scholar 

  • Lee HA, Baek EB, Park KS, Jung HJ, Kim JI, Kim SJ et al (2007) Mechanosensitive nonselective cation channel facilitation by endothelin-1 is regulated by protein kinase C in arterial myocytes. Cardiovasc Res 76(2):224–235

    PubMed  CAS  Google Scholar 

  • Lincoln TM, Dey N, Sellak H (2001) Invited review: cGMP-dependent protein kinase signaling mechanisms in smooth muscle: from the regulation of tone to gene expression. J Appl Physiol 91(3):1421–1430

    PubMed  CAS  Google Scholar 

  • Liu D, Scholze A, Zhu Z, Kreutz R, Wehland-von-Trebra M, Zidek W et al (2005) Increased transient receptor potential channel TRPC3 expression in spontaneously hypertensive rats. Am J Hypertens 18(11):1503–1507

    PubMed  CAS  Google Scholar 

  • Liu D, Scholze A, Zhu Z, Krueger K, Thilo F, Burkert A et al (2006) Transient receptor potential channels in essential hypertension. J Hypertens 24(6):1105–1114

    PubMed  CAS  Google Scholar 

  • Liu D, Yang D, He H, Chen X, Cao T, Feng X et al (2009) Increased transient receptor potential canonical type 3 channels in vasculature from hypertensive rats. Hypertension 53(1):70–76

    PubMed  CAS  Google Scholar 

  • Loot AE, Popp R, Fisslthaler B, Vriens J, Nilius B, Fleming I (2008) Role of cytochrome P450-dependent transient receptor potential V4 activation in flow-induced vasodilatation. Cardiovasc Res 80(3):445–452

    PubMed  CAS  Google Scholar 

  • Lowik MM, Groenen PJ, Levtchenko EN, Monnens LA, Van Den Heuvel LP (2009) Molecular genetic analysis of podocyte genes in focal segmental glomerulosclerosis–a review. Eur J Pediatr 168(11):1291–1304.

    PubMed  CAS  Google Scholar 

  • Lundbaek JA, Collingwood SA, Ingolfsson HI, Kapoor R, Andersen OS (2010a) Lipid bilayer regulation of membrane protein function: gramicidin channels as molecular force probes. J R Soc Interface 7(44):373–395

    CAS  Google Scholar 

  • Lundbaek JA, Koeppe RE, Andersen OS (2010b) Amphiphile regulation of ion channel function by changes in the bilayer spring constant. Proc Natl Acad Sci USA 107(35):15427–15430

    CAS  Google Scholar 

  • Marji JS, Wang MH, Laniado-Schwartzman M (2002) Cytochrome P-450 4 A isoform expression and 20-HETE synthesis in renal preglomerular arteries. Am J Physiol Renal Physiol 283(1):F60–67

    PubMed  CAS  Google Scholar 

  • Maroto R, Raso A, Wood TG, Kurosky A, Martinac B, Hamill OP (2005) TRPC1 forms the stretch-activated cation channel in vertebrate cells. Nat Cell Biol 7(2):179–185

    PubMed  CAS  Google Scholar 

  • Martinac B, Kloda A (2003) Evolutionary origins of mechanosensitive ion channels. Prog Biophys Mol Biol 82(1–3):11–24

    PubMed  CAS  Google Scholar 

  • Martinez-Lemus LA, Wu X, Wilson E, Hill MA, Davis GE, Davis MJ et al (2003) Integrins as unique receptors for vascular control. J Vasc Res 40(3):211–233

    PubMed  CAS  Google Scholar 

  • Matsumoto H, Baron CB, Coburn RF (1995) Smooth muscle stretch-activated phospholipase C activity. Am J Physiol 268(2 Pt 1):C458–465

    PubMed  CAS  Google Scholar 

  • Mederos y Schnitzler M, Storch U, Meibers S, Nurwakagari P, Breit A, Essin K et al (2008) Gq-coupled receptors as mechanosensors mediating myogenic vasoconstriction. Embo J 27(23):3092–3103

    PubMed  CAS  Google Scholar 

  • Meininger GA, Faber JE (1991) Adrenergic facilitation of myogenic response in skeletal muscle arterioles. Am J Physiol 260(5 Pt 2):H1424–1432

    PubMed  CAS  Google Scholar 

  • Meves H (2008) Arachidonic acid and ion channels: an update. Br J Pharmacol 155(1):4–16

    PubMed  CAS  Google Scholar 

  • Moller CC, Flesche J, Reiser J (2009) Sensitizing the Slit Diaphragm with TRPC6 ion channels. J Am Soc Nephrol 20(5):950–953

    PubMed  CAS  Google Scholar 

  • Narayanan J, Imig M, Roman RJ, Harder DR (1994) Pressurization of isolated renal arteries increases inositol trisphosphate and diacylglycerol. Am J Physiol 266(5 Pt 2):H1840–1845

    PubMed  CAS  Google Scholar 

  • Naylor J, Li J, Milligan CJ, Zeng F, Sukumar P, Hou B et al (2010) Pregnenolone sulphate- and cholesterol-regulated TRPM3 channels coupled to vascular smooth muscle secretion and contraction. Circ Res 106(9):1507–1515

    PubMed  CAS  Google Scholar 

  • Nilius B, Droogmans G (2001) Ion channels and their functional role in vascular endothelium. Physiol Rev 81(4):1415–1459

    PubMed  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286(2):C195–205

    PubMed  CAS  Google Scholar 

  • Oancea E, Wolfe JT, Clapham DE (2006) Functional TRPM7 channels accumulate at the plasma membrane in response to fluid flow. Circ Res 98(2):245–253

    PubMed  CAS  Google Scholar 

  • Osol G, Laher I, Kelley M (1993) Myogenic tone is coupled to phospholipase C and G protein activation in small cerebral arteries. Am J Physiol 265(1 Pt 2):H415–420

    PubMed  CAS  Google Scholar 

  • Park KS, Kim Y, Lee YH, Earm YE, Ho WK (2003) Mechanosensitive cation channels in arterial smooth muscle cells are activated by diacylglycerol and inhibited by phospholipase C inhibitor. Circ Res 93(6):557–564

    PubMed  CAS  Google Scholar 

  • Parnas M, Katz B, Lew S, Tzarfaty V, Dadon D, Gordon-Shaag A et al (2009a) Membrane lipid modulations remove divalent open channel block from TRP-like and NMDA channels. J Neurosci 29(8):2371–2383

    CAS  Google Scholar 

  • Parnas M, Peters M, Minke B (2009b) Linoleic acid inhibits TRP channels with intrinsic voltage sensitivity: implications on the mechanism of linoleic acid action. Channels (Austin) 3(3):164–6

    CAS  Google Scholar 

  • Perozo E, Kloda A, Cortes DM, Martinac B (2002) Physical principles underlying the transduction of bilayer deformation forces during mechanosensitive channel gating. Nat Struct Biol 9(9):696–703

    PubMed  CAS  Google Scholar 

  • Putney JW Jr (2007) Inositol lipids and TRPC channel activation. Biochem Soc Symp(74):37–45

    PubMed  CAS  Google Scholar 

  • Raghu P, Hardie RC (2009) Regulation of Drosophila TRPC channels by lipid messengers. Cell Calcium 45(6):566–573

    PubMed  CAS  Google Scholar 

  • Ramsey IS, Delling M, Clapham DE (2006) An introduction to TRP channels. Annu Rev Physiol 68:619–647

    PubMed  CAS  Google Scholar 

  • Rohacs T, Lopes CM, Michailidis I, Logothetis DE (2005) PI(4,5)P2 regulates the activation and desensitization of TRPM8 channels through the TRP domain. Nat Neurosci 8(5):626–634

    PubMed  CAS  Google Scholar 

  • Roman RJ (2002) P-450 metabolites of arachidonic acid in the control of cardiovascular function. Physiol Rev 82(1):131–185

    PubMed  CAS  Google Scholar 

  • Scotland RS, Chauhan S, Davis C, De Felipe C, Hunt S, Kabir J et al (2004) Vanilloid receptor TRPV1, sensory C-fibers, and vascular autoregulation: a novel mechanism involved in myogenic constriction. Circ Res 95(10):1027–1034

    PubMed  CAS  Google Scholar 

  • Spassova MA, Hewavitharana T, Xu W, Soboloff J, Gill DL (2006) A common mechanism underlies stretch activation and receptor activation of TRPC6 channels. Proc Natl Acad Sci USA 103(44):16586–16591

    PubMed  CAS  Google Scholar 

  • Suchyna TM, Johnson JH, Hamer K, Leykam JF, Gage DA, Clemo HF et al (2000) Identification of a peptide toxin from Grammostola spatulata spider venom that blocks cation-selective stretch-activated channels. J Gen Physiol 115(5):583–598

    PubMed  CAS  Google Scholar 

  • Suh BC, Hille B (2008) PIP2 is a necessary cofactor for ion channel function: how and why? Annu Rev Biophys 37:175–195

    PubMed  CAS  Google Scholar 

  • Sukharev SI, Martinac B, Arshavsky VY, Kung C (1993) Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 65(1):177–183

    PubMed  CAS  Google Scholar 

  • Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N et al (2008) Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 586(Pt 17):4209–4223

    PubMed  CAS  Google Scholar 

  • Tavernarakis N, Driscoll M (1997) Molecular modeling of mechanotransduction in the nematode Caenorhabditis elegans. Annu Rev Physiol 59:659–689

    PubMed  CAS  Google Scholar 

  • Ufret-Vincenty CA, Klein RM, Hua L, Angueyra J, Gordon SE (2011) Localization of the PIP2 sensor of TRPV1 ion channels. J Biol Chem 286(11):9688–9698

    PubMed  CAS  Google Scholar 

  • van Rossum DB, Oberdick D, Rbaibi Y, Bhardwaj G, Barrow RK, Nikolaidis N et al (2008) TRP_2, a lipid/trafficking domain that mediates diacylglycerol-induced vesicle fusion. J Biol Chem 283(49):34384–34392

    PubMed  Google Scholar 

  • VanBavel E, Mulvany MJ (1994) Role of wall tension in the vasoconstrictor response of cannulated rat mesenteric small arteries. J Physiol 477(Pt 1):103–115

    PubMed  Google Scholar 

  • Vriens J, Owsianik G, Janssens A, Voets T, Nilius B (2007) Determinants of 4 alpha-phorbol sensitivity in transmembrane domains 3 and 4 of the cation channel TRPV4. J Biol Chem 282(17):12796–12803

    PubMed  CAS  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424(6947):434–438

    PubMed  CAS  Google Scholar 

  • Watanabe H, Murakami M, Ohba T, Takahashi Y, Ito H (2008) TRP channel and cardiovascular disease. Pharmacol Ther 118(3):337–351

    PubMed  CAS  Google Scholar 

  • Wegierski T, Lewandrowski U, Muller B, Sickmann A, Walz G (2009) Tyrosine Phosphorylation Modulates the Activity of TRPV4 in Response to Defined Stimuli. J Biol Chem 284(5):2923–2933

    PubMed  CAS  Google Scholar 

  • Welsh DG, Morielli AD, Nelson MT, Brayden JE (2002) Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 90(3):248–250

    PubMed  CAS  Google Scholar 

  • Willette RN, Bao W, Nerurkar S, Yue TL, Doe CP, Stankus G et al (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: Part 2. J Pharmacol Exp Ther 326(2):443–452

    PubMed  CAS  Google Scholar 

  • Witzgall R (2007) TRPP2 channel regulation. Handb Exp Pharmacol 179:363–375

    PubMed  CAS  Google Scholar 

  • Yasuda N, Miura S, Akazawa H, Tanaka T, Qin Y, Kiya Y et al (2008) Conformational switch of angiotensin II type 1 receptor underlying mechanical stress-induced activation. EMBO Rep 9(2):179–186

    PubMed  CAS  Google Scholar 

  • Yin J, Kuebler WM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56(1):1–18

    PubMed  CAS  Google Scholar 

  • Zou AP, Imig JD, Kaldunski M, Ortiz de Montellano PR, Sui Z, Roman RJ (1994) Inhibition of renal vascular 20-HETE production impairs autoregulation of renal blood flow. Am J Physiol 266(2 Pt 2):F275–F282

    PubMed  CAS  Google Scholar 

  • Zou AP, Fleming JT, Falck JR, Jacobs ER, Gebremedhin D, Harder DR et al (1996) 20-HETE is an endogenous inhibitor of the large-conductance Ca(2+)-activated K+ channel in renal arterioles. Am J Physiol 270(1 Pt 2):R228–R237

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Part of this work is supported by Grants-in-aid for Scientific Research on Innovative Areas (No.22136008) and Scientific Research (C) (No. 21590246), and a grant from Seizon Kagaku Institute to R.I. Support was also obtained as a member from an oversea funding granted to Dr. Juan Shi at the Department of Anatomy and K.K. Leung Brian Research Center, the Fourth Military Medical University Xi′an (National Natural Science Foundation of China: No. 30871004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryuji Inoue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Inoue, R., Hu, Y., Duan, Y., Itsuki, K. (2012). Lipid-Mediated Mechanisms Involved in the Mechanical Activation of TRPC6 and TRPV4 Channels in the Vascular Tone Regulation. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_10

Download citation

Publish with us

Policies and ethics