Advertisement

Videos Analytic Retrieval System for CCTV Surveillance

  • Su-wan ParkEmail author
  • Kyung-Soo Lim
  • Jong Wook Han
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 179)

Abstract

The proposed system demonstrates an efficient framework of video retrieval system and the video analysis retrieval scheme using object color for CCTV surveillance. The video analysis retrieval scheme consists of metadata generation function, multiple-video search function and evidence-video generation function. The proposed retrieval scheme uses the dominant colors of object and applies the similarity measurement method of absolute (or fixed) range or relative (or variable) range. Thus, it provides the compactness of object data and the low computational cost in the color extraction and similarity measure.

Keywords

CCTV Surveillance system Video Surveillance Video Retrieval Evidence Video 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chung, R.H.Y., Chin, F.Y.L., Wong, K.Y.K., Chow, K.P., Luo, T., Fung, H.S.K.: Efficient block-based motion segmentation method using motion vector consistency. In: Proc. IAPR Conference on Machine Vision Applications, pp. 550–553 (May 2005)Google Scholar
  2. 2.
    Kalman, R.E.: A New Approach to Linear Filtering and Prediction Problems. Transaction of the ASME-Journal of Basic Engineering, 35–45 (March 1960)Google Scholar
  3. 3.
    Hwang, T., Cho, S., Park, J., Choi, K.: Object Tracking for a Video Sequence from a Moving Vehicle: A Multi-modal Approach. ETRI Journal 28(3), 367–370 (2006)CrossRefGoogle Scholar
  4. 4.
    Montcalm, T., Boufama, B.: Object Inter-camera Tracking with Non-overlapping Views: A New Dynamic Approach. In: Proceedings of the 2010 Canadian Conference on Computer and Robot Vision, pp. 354–361 (June 2010)Google Scholar
  5. 5.
    Perrott, A.J., Lindsay, A.T., Parkes, A.P.: Real-time multimedia tagging and content-based retrieval for CCTV surveillance systems. In: Proceeding on SPIE, vol. 4862 (July 2002)Google Scholar
  6. 6.
    Brown, L.M.: Color Retrieval for Video Surveillance. In: IEEE International Conference on AVSS 2008, pp. 283–290 (September 2008)Google Scholar
  7. 7.
    Tian, Y., Hampapur, A., Brow, L., Feris, R., Lu, M., Senior, A.: Event Detection, Query, and Retrieval for Video Surveillance. In: Artificial Intelligence for Maximizing Content Based Image Retrieval (2009)Google Scholar
  8. 8.
    Yuk, J.S.-C., Wong, K.-Y., Chung, R.H.-Y., Chow, K.P., Chin, F.Y.-L., Tsang, K.S.-H.T.: Object-based surveillance video retrieval system with real-time indexing methodology. In: International Conference on Image Analysis and Recognition (ICIAR), pp. 626–637 (2007)Google Scholar
  9. 9.
  10. 10.
    Lim, K.-S., Yoo, B.Y., Han, J., Bang, J., Lee, S.: A Portable Forensic Toolkit for Rapid Crime Response. In: Proceeding of Korea Digital Forensic Workshop (2009)Google Scholar
  11. 11.
    Rogers, M.K., Goldman, J., Mislan, R., Wedge, T., Debrot, S.: Computer Forensics Field Triage Process Model. In: Conference on Digital Forensics, Security and Law (2006)Google Scholar
  12. 12.
    Turner, P.: Applying a forensic approach to incident response, network investigation and system administration using Digital Evidence Bags. Original Research Article, Digital Investigation 4(1), 30–35 (2007)CrossRefGoogle Scholar
  13. 13.
    Lim, K.-S., Lee, D.G., Han, J.W.: A New Proposal for a Digital Evidence Container Security Convergence. In: IEEE International Conference on Control System, Computing and Engineering (November 2011)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Knowledge Information Security Research DepartmentElectronics and Telecommunication Research InstituteDaejeonKorea

Personalised recommendations