Skip to main content

Data Embedding Scheme for Reversible Authentication

  • Conference paper
Future Information Technology, Application, and Service

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 179))

  • 1087 Accesses

Abstract

Many watermarking techniques were proposed for medical images. However, virtually all watermarking schemes introduce some small amount of irreversible distortion, making them unsuitable for certain medical and military imaging applications. This has led to considerable recent interest in developing lossless watermarking schemes. We propose such a lossless scheme that fully recovers the original image using a secure key, incurs low computational overhead. An image is divided into a grid of blocks, and the watermark is embedded in the least significant bits of the pixels in that block. The data required for authentication is produced by an XOR operation between binary pseudo-noise sequences and a hash function computed from the image. We compare our scheme to other recently proposed lossless schemes and show that it produces less perceptible image distortion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, I.J., Kilian, J., Leighton, T., Shamoon, T.: Secure spread spectrum watermarking for multimedia. IEEE Trans. Image Process. 6(12), 1673–1687 (1997)

    Article  Google Scholar 

  2. Yoo, K.-S., Lee, W.-H.: Classification-based image watermarking using wavelet DC components. Imag. Sci. J. 58(2), 105–111

    Google Scholar 

  3. Vleeschouwer, C., Delaigle, J.-F., Macq, B.: Invisibility and application functionalities in perceptual watermarking – an overview. Proc. IEEE 90(1), 64–77 (2002)

    Article  Google Scholar 

  4. Petitcolas, F.A.P., Anderson, R.J., Kuhn, M.G.: Information hiding—a survey. Proc. IEEE 87(7), 1062–1078 (1999)

    Article  Google Scholar 

  5. Wong, P., Memon, N.: Secret and public key image watermarking schemes for image authentication and ownership verification. IEEE Trans. Image Process. 10, 1593–1601 (2001)

    Article  MATH  Google Scholar 

  6. Zhang, X., Wang, S.: Statistical fragile watermarking capable of locating individual tampered pixels. IEEE Signal Process. Lett. 14(10), 727–730 (2007)

    Article  Google Scholar 

  7. Lu, H., Shen, R., Chung, F.-L.: Fragile watermarking scheme for image authentication. Electronics Letters 39(12), 898–900 (2003)

    Article  Google Scholar 

  8. He, H.-J., Zhang, J.-S., Tai, H.-M.: A Wavelet-Based Fragile Watermarking Scheme for Secure Image Authentication. In: Shi, Y.Q., Jeon, B. (eds.) IWDW 2006. LNCS, vol. 4283, pp. 422–432. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  9. Liu, S.-H., Yao, H.-X., Gao, W., Liu, Y.-L.: An image fragile watermark scheme based on chaotic image pattern and pixel-pairs. Applied Mathematics and Computing 185(2), 869–882 (2007)

    Article  MATH  Google Scholar 

  10. Ho, A.T.S., Zhu, X., Shen, J., Marziliano, P.: Fragile watermarking based on encoding of the zeroes of the z-transform. IEEE Trans. Inf. Forensics Security 3(3), 567–569 (2008)

    Article  Google Scholar 

  11. Yeh, F.H., Lee, G.C.: Content-based watermarking in image authentication allowing remedying of tampered images. Optical Engineering 45(7), 213–223 (2006)

    Google Scholar 

  12. Lee, G.C., Yeh, F.H.: Semifragile hybrid watermarking method for image authentication. Optical Engineering 46, 057002 (2007)

    Google Scholar 

  13. Yuan, H., Zhang, X.-P.: Multiscale fragile watermarking based on the Gaussian mixture model. IEEE Trans. Image Process. 15(10), 3189–3200 (2006)

    Article  Google Scholar 

  14. Wu, J., Zhu, B.B., Li, S., Lin, F.: A secure image authentication algorithm with pixel-level tamper localization. In: Proc. Int. Conf. Image Process., pp. 1573–1576 (2004)

    Google Scholar 

  15. Celik, M.U., Sharma, G., Saber, E., Tekalp, A.M.: Lossless watermarking for image authentication: a new framework and an implementation. IEEE Trans. Image Process. 15, 1042–1049 (2006)

    Article  Google Scholar 

  16. Stallings, W.: Cryptography and Network Security, 4th edn., pp. 317–339. Prentice Hall, New Jersey (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kil-sang Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Yoo, Ks., Lee, Wh. (2012). Data Embedding Scheme for Reversible Authentication. In: Park, J., Leung, V., Wang, CL., Shon, T. (eds) Future Information Technology, Application, and Service. Lecture Notes in Electrical Engineering, vol 179. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5064-7_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5064-7_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5063-0

  • Online ISBN: 978-94-007-5064-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics