Skip to main content

Understanding the Aging Process Using Epidemiologic Approaches

  • Chapter
  • First Online:
The Epidemiology of Aging

Abstract

Recent research has identified that aging and disease are not synonymous and that aging can be optimized. This has been demonstrated in animal models with genetic manipulation and caloric restriction that delay aging, morbidity and mortality. In these systems, mortality rate has been the primary marker of aging, but in vivo markers of aging are needed for human studies. Specifically, biomarkers of primary aging are needed as intermediate outcomes to understand the aging process and potential early benefits of preventive interventions. A useful approach for identifying and testing biomarkers of aging in epidemiologic studies includes demonstrating biologic plausibility that the marker describes a basic aging process, demonstrating the potential for translation from bench to bedside and to population, and subsequently assessing associations with important aging outcomes using optimal epidemiologic study designs and in accord with key statistical considerations. Biomarkers that putatively measure aspects of aging include interleukin-6, leukocyte telomere length, advanced glycation end products, insulin-like growth factor-1, dihydroepiandrostenedione sulfate and klotho. With these tools, epidemiologists will help uncover the secrets to living a healthy, long life and be integral to the design, implementation and assessment of interventions to promote healthy aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

25(OH)D:

25-Hydroxy Vitamin D

AGE:

Advanced Glycation End Product

ApoE:

Apolipoprotein E

CALERIE:

Comprehensive Assessment of Long-term Effects of Reduced Intake of Energy

CHARGE:

Cohorts for Heart and Aging Research in Genomic Epide­mio­logy

CHS:

Cardiovascular Health Study

CI:

Confidence Interval

CML:

Carboxymethyl-lysine

COPD:

Chronic Obstructive Pulmonary Disease

CRP:

C-Reactive Protein

DHEA:

Dehydroepiandrosterone

DHEAS:

Dehydroepiandrosterone Sulfate

DSST:

Digit Symbol Substitution Test

ELISA:

Enzyme-Linked Immunosorbent Assay

esRAGE:

endogenous secretory Receptor for Advanced Glycation End Product

FGF:

Fibroblast Growth Factor

GH:

Growth Hormone

HDL:

High-Density Lipoprotein

Health ABC:

Health Aging and Body Com­position

HGPS:

Hutchinson-Gilford Progeria Syn­drome

HR:

Hazard Ratio

IGF:

Insulin-like Growth Factor

IGFBP:

Insulin-like Growth Factor Bin­ding Proteins

IL-6:

Interleukin-6

InCHIANTI:

Invecchiari in Chianti Study

LDL:

Low-Density Lipoprotein

LTL:

Leukocyte Telomere Length

OR:

Odds Ratio

PI3K:

Phosphoinositol-3 Kinase

qPCR:

Quantitative Polymerase Chain Reac­tion

RAGE:

Receptor for Advanced Glycation End Product

ROS:

Reactive Oxygen Species

SBP:

Systolic Blood Pressure

SD:

Standard Deviation

SE:

Standard Error

sRAGE:

soluble Receptor for Advanced Glycation End Product

TNF-alpha:

Tumor Necrosis Factor Alpha

XP:

Xeroderma Pigmentosum

References

  1. Newman AB, Boudreau RM, Naydeck BL et al (2008) A physiologic index of comorbidity: relationship to mortality and disability. J Gerontol A Biol Sci Med Sci 63:603–609

    Article  PubMed  Google Scholar 

  2. Baker GT 3rd, Sprott RL (1988) Biomarkers of aging. Exp Gerontol 23:223–239

    Article  PubMed  Google Scholar 

  3. Butler RN, Sprott R, Warner H et al (2004) Biomarkers of aging: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci 59:B560–B567

    Article  PubMed  Google Scholar 

  4. Sprott RL (2010) Biomarkers of aging and disease: introduction and definitions. Exp Gerontol 45:2–4

    Article  PubMed  CAS  Google Scholar 

  5. Taffet GA (2003) Physiology of aging. In: Cassel CK (ed) Geriatric medicine: an evidence-based approach, 4th edn. Springer, New York, pp 27–35

    Google Scholar 

  6. Blumenthal HT (2003) The aging-disease dichotomy: true or false? J Gerontol A Biol Sci Med Sci 58:138–145

    Article  PubMed  Google Scholar 

  7. Miller RA (2003) The biology of aging and longevity. In: Hazzard WR, Blass JP, Halter JB, Ouslander JG, Tinetti ME (eds) Principles of geriatric medicine and gerontology, 5th edn. McGraw-Hill, New York, pp 3–15

    Google Scholar 

  8. Fontana L, Partridge L, Longo VD (2010) Extending healthy life span–from yeast to humans. Science 328:321–326

    Article  PubMed  CAS  Google Scholar 

  9. Newman AB (2010) An overview of the design, implementation, and analyses of longitudinal studies on aging. J Am Geriatr Soc 58(Suppl 2):S287–S291

    Article  PubMed  Google Scholar 

  10. Metter EJ, Talbot LA, Schrager M et al (2002) Skeletal muscle strength as a predictor of all-cause mortality in healthy men. J Gerontol A Biol Sci Med Sci 57:B359–B365

    Article  PubMed  Google Scholar 

  11. Fleg JL, Morrell CH, Bos AG et al (2005) Accelerated longitudinal decline of aerobic capacity in healthy older adults. Circulation 112:674–682

    Article  PubMed  Google Scholar 

  12. Riggs BL, Melton Iii LJ 3rd, Robb RA et al (2004) Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res 19:1945–1954

    Article  PubMed  Google Scholar 

  13. Newman AB, Glynn NW, Taylor CA et al (2011) Health and function of participants in the Long Life Family Study: a comparison with other cohorts. Aging (Albany NY) 3:63–76

    Google Scholar 

  14. Arnold AM, Newman AB, Cushman M et al (2010) Body weight dynamics and their association with physical function and mortality in older adults: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 65:63–70

    Article  PubMed  Google Scholar 

  15. Cappola AR, Xue QL, Ferrucci L et al (2003) Insulin-like growth factor I and interleukin-6 contribute synergistically to disability and mortality in older women. J Clin Endocrinol Metab 88:2019–2025

    Article  PubMed  CAS  Google Scholar 

  16. Muftuoglu M, Oshima J, von Kobbe C et al (2008) The clinical characteristics of Werner syndrome: molecular and biochemical diagnosis. Hum Genet 124:369–377

    Article  PubMed  CAS  Google Scholar 

  17. Eriksson M, Brown WT, Gordon LB et al (2003) Recurrent de novo point mutations in lamin A cause Hutchinson-Gilford progeria syndrome. Nature 423:293–298

    Article  PubMed  CAS  Google Scholar 

  18. Merideth MA, Gordon LB, Clauss S et al (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604

    Article  PubMed  CAS  Google Scholar 

  19. Niedernhofer LJ, Bohr VA, Sander M et al (2011) Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: molecules to patients. Mech Ageing Dev 132:340–347

    Article  PubMed  CAS  Google Scholar 

  20. Niedernhofer LJ (2008) Tissue-specific accelerated aging in nucleotide excision repair deficiency. Mech Ageing Dev 129:408–415

    Article  PubMed  CAS  Google Scholar 

  21. Hadley EC, Rossi WK (2005) Exceptional survival in human populations: National Institute on Aging perspectives and programs. Mech Ageing Dev 126:231–234

    Article  PubMed  Google Scholar 

  22. Terry DF, Wilcox MA, McCormick MA et al (2004) Lower all-cause, cardiovascular, and cancer mortality in centenarians’ offspring. J Am Geriatr Soc 52:2074–2076

    Article  PubMed  Google Scholar 

  23. Fraser GE, Shavlik DJ (2001) Ten years of life: is it a matter of choice? Arch Intern Med 161:1645–1652

    Article  PubMed  CAS  Google Scholar 

  24. Willcox DC, Willcox BJ, Todoriki H et al (2009) The Okinawan diet: health implications of a low-calorie, nutrient-dense, antioxidant-rich dietary pattern low in glycemic load. J Am Coll Nutr 28(Suppl):500S–516S

    PubMed  CAS  Google Scholar 

  25. Willcox BJ, Willcox DC, He Q et al (2006) Siblings of Okinawan centenarians share lifelong mortality advantages. J Gerontol A Biol Sci Med Sci 61:345–354

    Article  PubMed  Google Scholar 

  26. Newman AB, Arnold AM, Sachs MC et al (2009) Long-term function in an older cohort–the cardiovascular health study all stars study. J Am Geriatr Soc 57:432–440

    Article  PubMed  Google Scholar 

  27. Simm A, Nass N, Bartling B et al (2008) Potential biomarkers of ageing. Biol Chem 389:257–265

    Article  PubMed  CAS  Google Scholar 

  28. Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41:1243–1246

    Article  PubMed  CAS  Google Scholar 

  29. MacKinnon DP, Fairchild AJ, Fritz MS (2007) Mediation analysis. Annu Rev Psychol 58:593–614

    Article  PubMed  Google Scholar 

  30. Singh T, Newman AB (2011) Inflammatory markers in population studies of aging. Ageing Res Rev 10:319–329

    Article  PubMed  CAS  Google Scholar 

  31. Maggio M, Guralnik JM, Longo DL et al (2006) Interleukin-6 in aging and chronic disease: a magnificent pathway. J Gerontol A Biol Sci Med Sci 61:575–584

    Article  PubMed  Google Scholar 

  32. Fried SK, Bunkin DA, Greenberg AS (1998) Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab 83:847–850

    Article  PubMed  CAS  Google Scholar 

  33. Mohamed-Ali V, Goodrick S, Rawesh A et al (1997) Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab 82:4196–4200

    Article  PubMed  CAS  Google Scholar 

  34. Schrager MA, Metter EJ, Simonsick E et al (2007) Sarcopenic obesity and inflammation in the InCHIANTI study. J Appl Physiol 102:919–925

    Article  PubMed  Google Scholar 

  35. Beasley LE, Koster A, Newman AB et al (2009) Inflammation and race and gender differences in computerized tomography-measured adipose depots. Obesity (Silver Spring) 17:1062–1069

    Article  Google Scholar 

  36. Pou KM, Massaro JM, Hoffmann U et al (2007) Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation 116:1234–1241

    Article  PubMed  CAS  Google Scholar 

  37. Jilka RL, Hangoc G, Girasole G et al (1992) Increased osteoclast development after estrogen loss: mediation by interleukin-6. Science 257:88–91

    Article  PubMed  CAS  Google Scholar 

  38. Kania DM, Binkley N, Checovich M et al (1995) Elevated plasma levels of interleukin-6 in postmenopausal women do not correlate with bone density. J Am Geriatr Soc 43:236–239

    PubMed  CAS  Google Scholar 

  39. Passeri G, Girasole G, Jilka RL et al (1993) Increased interleukin-6 production by murine bone marrow and bone cells after estrogen withdrawal. Endocrinology 133:822–828

    Article  PubMed  CAS  Google Scholar 

  40. Pfeilschifter J, Koditz R, Pfohl M et al (2002) Changes in proinflammatory cytokine activity after menopause. Endocr Rev 23:90–119

    Article  PubMed  CAS  Google Scholar 

  41. Lee CG, Carr MC, Murdoch SJ et al (2009) Adipokines, inflammation, and visceral adiposity across the menopausal transition: a prospective study. J Clin Endocrinol Metab 94:1104–1110

    Article  PubMed  CAS  Google Scholar 

  42. Arnson Y, Shoenfeld Y, Amital H (2010) Effects of tobacco smoke on immunity, inflammation and autoimmunity. J Autoimmun 34:J258–J265

    Article  PubMed  CAS  Google Scholar 

  43. Bretz WA, Weyant RJ, Corby PM et al (2005) Systemic inflammatory markers, periodontal diseases, and periodontal infections in an elderly population. J Am Geriatr Soc 53:1532–1537

    Article  PubMed  Google Scholar 

  44. Reuben DB, Judd-Hamilton L, Harris TB et al (2003) The associations between physical activity and inflammatory markers in high-functioning older persons: MacArthur Studies of Successful Aging. J Am Geriatr Soc 51:1125–1130

    Article  PubMed  Google Scholar 

  45. Elosua R, Bartali B, Ordovas JM et al (2005) Association between physical activity, physical performance, and inflammatory biomarkers in an elderly population: the InCHIANTI study. J Gerontol A Biol Sci Med Sci 60:760–767

    Article  PubMed  Google Scholar 

  46. Proctor CJ, Kirkwood TB (2002) Modelling telomere shortening and the role of oxidative stress. Mech Ageing Dev 123:351–363

    Article  PubMed  CAS  Google Scholar 

  47. Sidorov I, Kimura M, Yashin A et al (2009) Leukocyte telomere dynamics and human hematopoietic stem cell kinetics during somatic growth. Exp Hematol 37:514–524

    Article  PubMed  CAS  Google Scholar 

  48. von Zglinicki T, Martin-Ruiz CM (2005) Telomeres as biomarkers for ageing and age-related diseases. Curr Mol Med 5:197–203

    Article  Google Scholar 

  49. Blackburn EH (2000) Telomere states and cell fates. Nature 408:53–56

    Article  PubMed  CAS  Google Scholar 

  50. Blasco MA (2007) Telomere length, stem cells and aging. Nat Chem Biol 3:640–649

    Article  PubMed  CAS  Google Scholar 

  51. Mather KA, Jorm AF, Parslow RA et al (2011) Is telomere length a biomarker of aging? A review. J Gerontol A Biol Sci Med Sci 66:202–213

    Article  PubMed  CAS  Google Scholar 

  52. von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Article  Google Scholar 

  53. von Zglinicki T, Pilger R, Sitte N (2000) Accumulation of single-strand breaks is the major cause of telomere shortening in human fibroblasts. Free Radic Biol Med 28:64–74

    Article  Google Scholar 

  54. von Zglinicki T (2000) Role of oxidative stress in telomere length regulation and replicative senescence. Ann N Y Acad Sci 908:99–110

    Article  Google Scholar 

  55. von Zglinicki T, Saretzki G, Docke W et al (1995) Mild hyperoxia shortens telomeres and inhibits proliferation of fibroblasts: a model for senescence? Exp Cell Res 220:186–193

    Article  Google Scholar 

  56. Saretzki G, Sitte N, Merkel U et al (1999) Telomere shortening triggers a p53-dependent cell cycle arrest via accumulation of G-rich single stranded DNA fragments. Oncogene 18:5148–5158

    Article  PubMed  CAS  Google Scholar 

  57. Sitte N, Saretzki G, von Zglinicki T (1998) Accelerated telomere shortening in fibroblasts after extended periods of confluency. Free Radic Biol Med 24:885–893

    Article  PubMed  CAS  Google Scholar 

  58. Batty GD, Wang Y, Brouilette SW et al (2009) Socioeconomic status and telomere length: the West of Scotland Coronary Prevention Study. J Epidemiol Community Health 63:839–841

    Article  PubMed  CAS  Google Scholar 

  59. Bekaert S, De Meyer T, Rietzschel ER et al (2007) Telomere length and cardiovascular risk factors in a middle-aged population free of overt cardiovascular disease. Aging Cell 6:639–647

    Article  PubMed  CAS  Google Scholar 

  60. Benetos A, Okuda K, Lajemi M et al (2001) Telomere length as an indicator of biological aging: the gender effect and relation with pulse pressure and pulse wave velocity. Hypertension 37:381–385

    Article  PubMed  CAS  Google Scholar 

  61. Benetos A, Gardner JP, Zureik M et al (2004) Short telomeres are associated with increased carotid atherosclerosis in hypertensive subjects. Hypertension 43:182–185

    Article  PubMed  CAS  Google Scholar 

  62. Brouilette S, Singh RK, Thompson JR et al (2003) White cell telomere length and risk of premature myocardial infarction. Arterioscler Thromb Vasc Biol 23:842–846

    Article  PubMed  CAS  Google Scholar 

  63. Cherkas LF, Hunkin JL, Kato BS et al (2008) The association between physical activity in leisure time and leukocyte telomere length. Arch Intern Med 168:154–158

    Article  PubMed  Google Scholar 

  64. Demissie S, Levy D, Benjamin EJ et al (2006) Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5:325–330

    Article  PubMed  CAS  Google Scholar 

  65. Fitzpatrick AL, Kronmal RA, Gardner JP et al (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165:14–21

    Article  PubMed  Google Scholar 

  66. Hunt SC, Chen W, Gardner JP et al (2008) Leukocyte telomeres are longer in African Americans than in whites: the National Heart, Lung, and Blood Institute Family Heart Study and the Bogalusa Heart Study. Aging Cell 7:451–458

    Article  PubMed  CAS  Google Scholar 

  67. Nordfjall K, Eliasson M, Stegmayr B et al (2008) Telomere length is associated with obesity parameters but with a gender difference. Obesity (Silver Spring) 16:2682–2689

    Article  CAS  Google Scholar 

  68. Roux AV, Ranjit N, Jenny NS et al (2009) Race/ethnicity and telomere length in the Multi-Ethnic Study of Atherosclerosis. Aging Cell 8:251–257

    Article  CAS  Google Scholar 

  69. Sanders JL, Cauley JA, Boudreau RM et al (2009) Leukocyte telomere length is not associated with BMD, osteoporosis, or fracture in older adults: results from the Health, Aging and Body Composition study. J Bone Miner Res 24:1531–1536

    Article  PubMed  CAS  Google Scholar 

  70. Tang NL, Woo J, Suen EW et al (2010) The effect of telomere length, a marker of biological aging, on bone mineral density in elderly population. Osteoporos Int 21:89–97

    Article  PubMed  CAS  Google Scholar 

  71. Chen W, Gardner JP, Kimura M et al (2009) Leukocyte telomere length is associated with HDL cholesterol levels: the Bogalusa heart study. Atherosclerosis 205:620–625

    Article  PubMed  CAS  Google Scholar 

  72. O’Donnell CJ, Demissie S, Kimura M et al (2008) Leukocyte telomere length and carotid artery intimal medial thickness: the Framingham Heart Study. Arterioscler Thromb Vasc Biol 28:1165–1171

    Article  PubMed  CAS  Google Scholar 

  73. Valdes AM, Andrew T, Gardner JP et al (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366:662–664

    Article  PubMed  CAS  Google Scholar 

  74. Harris SE, Deary IJ, MacIntyre A et al (2006) The association between telomere length, physical health, cognitive ageing, and mortality in non-demented older people. Neurosci Lett 406:260–264

    Article  PubMed  CAS  Google Scholar 

  75. Adams J, Martin-Ruiz C, Pearce MS et al (2007) No association between socio-economic status and white blood cell telomere length. Aging Cell 6:125–128

    Article  PubMed  CAS  Google Scholar 

  76. Woo J, Suen EW, Leung JC et al (2009) Older men with higher self-rated socioeconomic status have shorter telomeres. Age Ageing 38:553–558

    Article  PubMed  Google Scholar 

  77. Yang Z, Huang X, Jiang H et al (2009) Short telomeres and prognosis of hypertension in a Chinese population. Hypertension 53:639–645

    Article  PubMed  CAS  Google Scholar 

  78. De Meyer T, Rietzschel ER, De Buyzere ML et al (2009) Systemic telomere length and preclinical atherosclerosis: the Asklepios Study. Eur Heart J 30:3074–3081

    Article  PubMed  CAS  Google Scholar 

  79. Mainous AG 3rd, Codd V, Diaz VA et al (2010) Leukocyte telomere length and coronary artery calcification. Atherosclerosis 210:262–267

    Article  PubMed  CAS  Google Scholar 

  80. Aviv A, Chen W, Gardner JP et al (2009) Leukocyte telomere dynamics: longitudinal findings among young adults in the Bogalusa Heart Study. Am J Epidemiol 169:323–329

    Article  PubMed  Google Scholar 

  81. Samani N, Boultby R, Butler R et al (2001) Telomere shortening in atherosclerosis. Lancet 358:472–473

    Article  PubMed  CAS  Google Scholar 

  82. Minamino T (2002) Endothelial cell senescence in human atherosclerosis: role of telomere in endothelial dysfunction. Circulation 105:1541–1544

    Article  PubMed  CAS  Google Scholar 

  83. Matthews C, Gorenne I, Scott S et al (2006) Vascular smooth muscle cells undergo telomere-based senescence in human atherosclerosis: effects of telomerase and oxidative stress. Circ Res 99:156–164

    Article  PubMed  CAS  Google Scholar 

  84. Brouilette SW, Moore JS, McMahon AD et al (2007) Telomere length, risk of coronary heart disease, and statin treatment in the West of Scotland Primary Prevention Study: a nested case-control study. Lancet 369:107–114

    Article  PubMed  CAS  Google Scholar 

  85. Aviv A (2009) Leukocyte telomere length, hypertension, and atherosclerosis: are there potential mechanistic explanations? Hypertension 53:590–591

    Article  PubMed  CAS  Google Scholar 

  86. Richards JB, Valdes AM, Gardner JP et al (2008) Homocysteine levels and leukocyte telomere length. Atherosclerosis 200:271–277

    Article  PubMed  CAS  Google Scholar 

  87. Mather KA, Jorm AF, Milburn PJ et al (2010) No associations between telomere length and age-sensitive indicators of physical function in mid and later life. J Gerontol A Biol Sci Med Sci 65:792–799

    Article  PubMed  CAS  Google Scholar 

  88. Valdes AM, Richards JB, Gardner JP et al (2007) Telomere length in leukocytes correlates with bone mineral density and is shorter in women with osteoporosis. Osteoporos Int 18:1203–1210

    Article  PubMed  CAS  Google Scholar 

  89. Sanders JL, Iannaccone A, Boudreau RM et al (2011) The association of cataract with leukocyte telomere length in older adults: defining a new marker of aging. J Gerontol A Biol Sci Med Sci 66:639–645

    Article  PubMed  CAS  Google Scholar 

  90. Bekaert S, Van Pottelbergh I, De Meyer T et al (2005) Telomere length versus hormonal and bone mineral status in healthy elderly men. Mech Ageing Dev 126:1115–1122

    Article  PubMed  CAS  Google Scholar 

  91. Valdes AM, Deary IJ, Gardner J et al (2010) Leukocyte telomere length is associated with cognitive performance in healthy women. Neurobiol Aging 31:986–992

    Article  PubMed  CAS  Google Scholar 

  92. Grodstein F, van Oijen M, Irizarry MC et al (2008) Shorter telomeres may mark early risk of dementia: preliminary analysis of 62 participants from the nurses’ health study. PLoS One 3:e1590

    Article  PubMed  CAS  Google Scholar 

  93. von Zglinicki T, Serra V, Lorenz M et al (2000) Short telomeres in patients with vascular dementia: an indicator of low antioxidative capacity and a possible risk factor? Lab Invest 80:1739–1747

    Article  Google Scholar 

  94. Zekry D, Herrmann FR, Irminger-Finger I et al (2010) Telomere length is not predictive of dementia or MCI conversion in the oldest old. Neurobiol Aging 31:719–720

    Article  PubMed  CAS  Google Scholar 

  95. Yaffe K, Lindquist K, Kluse M et al (2011) Telomere length and cognitive function in community-dwelling elders: findings from the Health ABC Study. Neurobiol Aging 32:2055–2060

    Article  PubMed  CAS  Google Scholar 

  96. Honig LS, Schupf N, Lee JH et al (2006) Shorter telomeres are associated with mortality in those with APOE epsilon4 and dementia. Ann Neurol 60:181–187

    Article  PubMed  Google Scholar 

  97. Sanders JL, Fitzpatrick AL, Boudreau RM et al (2012) Leukocyte telomere length is associated with noninvasively measured age-related disease: the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 67(4):409–416

    PubMed  Google Scholar 

  98. Cawthon RM, Smith KR, O’Brien E et al (2003) Association between telomere length in blood and mortality in people aged 60 years or older. Lancet 361:393–395

    Article  PubMed  CAS  Google Scholar 

  99. Kimura M, Hjelmborg JV, Gardner JP et al (2008) Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol 167:799–806

    Article  PubMed  Google Scholar 

  100. Bakaysa SL, Mucci LA, Slagboom PE et al (2007) Telomere length predicts survival independent of genetic influences. Aging Cell 6:769–774

    Article  PubMed  CAS  Google Scholar 

  101. Epel ES, Merkin SS, Cawthon R et al (2009) The rate of leukocyte telomere shortening predicts mortality from cardiovascular disease in elderly men. Aging (Albany NY) 1:81–88

    CAS  Google Scholar 

  102. Ehrlenbach S, Willeit P, Kiechl S et al (2009) Influences on the reduction of relative telomere length over 10 years in the population-based Bruneck Study: introduction of a well-controlled high-throughput assay. Int J Epidemiol 38:1725–1734

    Article  PubMed  Google Scholar 

  103. Fitzpatrick AL, Kronmal RA, Kimura M et al (2011) Leukocyte telomere length and mortality in the Cardiovascular Health Study. J Gerontol A Biol Sci Med Sci 66:421–429

    Article  PubMed  Google Scholar 

  104. Martin-Ruiz CM, Gussekloo J, van Heemst D et al (2005) Telomere length in white blood cells is not associated with morbidity or mortality in the oldest old: a population-based study. Aging Cell 4:287–290

    Article  PubMed  CAS  Google Scholar 

  105. Bischoff C, Petersen HC, Graakjaer J et al (2006) No association between telomere length and survival among the elderly and oldest old. Epidemiology 17:190–194

    Article  PubMed  Google Scholar 

  106. Njajou OT, Hsueh WC, Blackburn EH et al (2009) Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a population-based cohort study. J Gerontol A Biol Sci Med Sci 64:860–864

    Article  PubMed  CAS  Google Scholar 

  107. Nordfjall K, Svenson U, Norrback KF et al (2009) The individual blood cell telomere attrition rate is telomere length dependent. PLoS Genet 5:e1000375

    Article  PubMed  CAS  Google Scholar 

  108. Farzaneh-Far R, Lin J, Epel E et al (2010) Telomere length trajectory and its determinants in persons with coronary artery disease: longitudinal findings from the Heart and Soul Study. PLoS One 5:e8612

    Article  PubMed  CAS  Google Scholar 

  109. Farzaneh-Far R, Lin J, Epel ES et al (2010) Association of marine omega-3 fatty acid levels with telomeric aging in patients with coronary heart disease. JAMA 303:250–257

    Article  PubMed  CAS  Google Scholar 

  110. Houben JM, Giltay EJ, Rius-Ottenheim N et al (2011) Telomere length and mortality in elderly men: the Zutphen Elderly Study. J Gerontol A Biol Sci Med Sci 66:38–44

    Article  PubMed  Google Scholar 

  111. Aviv A, Valdes AM, Spector TD (2006) Human telomere biology: pitfalls of moving from the laboratory to epidemiology. Int J Epidemiol 35:1424–1429

    Article  PubMed  Google Scholar 

  112. Chen W, Kimura M, Kim S et al (2011) Longitudinal versus cross-sectional evaluations of leukocyte telomere length dynamics: age-dependent telomere shortening is the rule. J Gerontol A Biol Sci Med Sci 66:312–319

    Article  PubMed  CAS  Google Scholar 

  113. Suji G, Sivakami S (2004) Glucose, glycation and aging. Biogerontology 5:365–373

    Article  PubMed  CAS  Google Scholar 

  114. Ramasamy R, Vannucci SJ, Yan SS et al (2005) Advanced glycation end products and RAGE: a common thread in aging, diabetes, neurodegeneration, and inflammation. Glycobiology 15:16R–28R

    Article  PubMed  CAS  Google Scholar 

  115. Yan SF, Ramasamy R, Naka Y et al (2003) Glycation, inflammation, and RAGE: a scaffold for the macrovascular complications of diabetes and beyond. Circ Res 93:1159–1169

    Article  PubMed  CAS  Google Scholar 

  116. Semba RD, Nicklett EJ, Ferrucci L (2010) Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci 65:963–975

    Article  PubMed  CAS  Google Scholar 

  117. Ramasamy R, Yan SF, Schmidt AM (2007) Arguing for the motion: yes, RAGE is a receptor for advanced glycation endproducts. Mol Nutr Food Res 51:1111–1115

    Article  PubMed  CAS  Google Scholar 

  118. Semba RD, Fink JC, Sun K et al (2010) Serum carboxymethyl-lysine, a dominant advanced glycation end product, is associated with chronic kidney disease: the Baltimore longitudinal study of aging. J Ren Nutr 20:74–81

    Article  PubMed  CAS  Google Scholar 

  119. Semba RD, Ferrucci L, Fink JC et al (2009) Advanced glycation end products and their circulating receptors and level of kidney function in older community-dwelling women. Am J Kidney Dis 53:51–58

    Article  PubMed  Google Scholar 

  120. Semba RD, Bandinelli S, Sun K et al (2009) Plasma carboxymethyl-lysine, an advanced glycation end product, and all-cause and cardiovascular disease mortality in older community-dwelling adults. J Am Geriatr Soc 57:1874–1880

    Article  PubMed  Google Scholar 

  121. Semba RD, Ferrucci L, Sun K et al (2009) Elevated serum advanced glycation end products and their circulating receptors are associated with anaemia in older community-dwelling women. Age Ageing 38:283–289

    Article  PubMed  Google Scholar 

  122. Semba RD, Bandinelli S, Sun K et al (2010) Relationship of an advanced glycation end product, plasma carboxymethyl-lysine, with slow walking speed in older adults: the InCHIANTI study. Eur J Appl Physiol 108:191–195

    Article  PubMed  CAS  Google Scholar 

  123. Semba RD, Najjar SS, Sun K et al (2009) Serum carboxymethyl-lysine, an advanced glycation end product, is associated with increased aortic pulse wave velocity in adults. Am J Hypertens 22:74–79

    Article  PubMed  CAS  Google Scholar 

  124. Crasto CL, Semba RD, Sun K et al (2011) Endogenous secretory receptor for advanced glycation end products is associated with low serum interleukin-1 receptor antagonist and elevated IL-6 in older community-dwelling adults. J Gerontol A Biol Sci Med Sci 66:437–443

    Article  PubMed  CAS  Google Scholar 

  125. Dalal M, Semba RD, Sun K et al (2011) Endogenous secretory receptor for advanced glycation end products and chronic kidney disease in the elderly population. Am J Nephrol 33:313–318

    Article  PubMed  CAS  Google Scholar 

  126. Dalal M, Ferrucci L, Sun K et al (2009) Elevated serum advanced glycation end products and poor grip strength in older community-dwelling women. J Gerontol A Biol Sci Med Sci 64:132–137

    Article  PubMed  CAS  Google Scholar 

  127. Haus JM, Carrithers JA, Trappe SW et al (2007) Collagen, cross-linking, and advanced glycation end products in aging human skeletal muscle. J Appl Physiol 103:2068–2076

    Article  PubMed  CAS  Google Scholar 

  128. Momma H, Niu K, Kobayashi Y et al (2011) Skin advanced glycation end product accumulation and muscle strength among adult men. Eur J Appl Physiol 111:1545–1552

    Article  PubMed  CAS  Google Scholar 

  129. Rahmadi A, Steiner N, Munch G (2011) Advanced glycation endproducts as gerontotoxins and biomarkers for carbonyl-based degenerative processes in Alzheimer’s disease. Clin Chem Lab Med 49:385–391

    Article  PubMed  CAS  Google Scholar 

  130. Srikanth V, Maczurek A, Phan T et al (2011) Advanced glycation endproducts and their receptor RAGE in Alzheimer’s disease. Neurobiol Aging 32:763–777

    Article  PubMed  CAS  Google Scholar 

  131. Yaffe K, Lindquist K, Schwartz AV et al (2011) Advanced glycation end product level, diabetes, and accelerated cognitive aging. Neurology 77:1351–1356

    Article  PubMed  CAS  Google Scholar 

  132. Kenyon C (2005) The plasticity of aging: insights from long-lived mutants. Cell 120:449–460

    Article  PubMed  CAS  Google Scholar 

  133. Rincon M, Rudin E, Barzilai N (2005) The insulin/IGF-1 signaling in mammals and its relevance to human longevity. Exp Gerontol 40:873–877

    Article  PubMed  CAS  Google Scholar 

  134. Berryman DE, Christiansen JS, Johannsson G et al (2008) Role of the GH/IGF-1 axis in lifespan and healthspan: lessons from animal models. Growth Horm IGF Res 18:455–471

    Article  PubMed  CAS  Google Scholar 

  135. Ziv E, Hu D (2011) Genetic variation in insulin/IGF-1 signaling pathways and longevity. Ageing Res Rev 10:201–204

    Article  PubMed  CAS  Google Scholar 

  136. Kenyon CJ (2010) The genetics of ageing. Nature 464:504–512

    Article  PubMed  CAS  Google Scholar 

  137. Xiang L, He G (2011) Caloric restriction and antiaging effects. Ann Nutr Metab 58:42–48

    Article  PubMed  CAS  Google Scholar 

  138. Landin-Wilhelmsen K, Wilhelmsen L, Lappas G et al (1994) Serum insulin-like growth factor I in a random population sample of men and women: relation to age, sex, smoking habits, coffee consumption and physical activity, blood pressure and concentrations of plasma lipids, fibrinogen, parathyroid hormone and osteocalcin. Clin Endocrinol (Oxf) 41:351–357

    Article  CAS  Google Scholar 

  139. Papadakis MA, Grady D, Tierney MJ et al (1995) Insulin-like growth factor 1 and functional status in healthy older men. J Am Geriatr Soc 43:1350–1355

    PubMed  CAS  Google Scholar 

  140. Goodman-Gruen D, Barrett-Connor E (1997) Epidemiology of insulin-like growth factor-I in elderly men and women. The Rancho Bernardo Study. Am J Epidemiol 145:970–976

    Article  PubMed  CAS  Google Scholar 

  141. Harris TB, Kiel D, Roubenoff R et al (1997) Association of insulin-like growth factor-I with body composition, weight history, and past health behaviors in the very old: the Framingham Heart Study. J Am Geriatr Soc 45:133–139

    PubMed  CAS  Google Scholar 

  142. O’Connor KG, Tobin JD, Harman SM et al (1998) Serum levels of insulin-like growth factor-I are related to age and not to body composition in healthy women and men. J Gerontol A Biol Sci Med Sci 53:M176–M182

    Article  PubMed  Google Scholar 

  143. Boonen S, Lysens R, Verbeke G et al (1998) Relationship between age-associated endocrine deficiencies and muscle function in elderly women: a cross-sectional study. Age Ageing 27:449–454

    Article  PubMed  CAS  Google Scholar 

  144. Perrini S, Laviola L, Carreira MC et al (2010) The GH/IGF1 axis and signaling pathways in the muscle and bone: mechanisms underlying age-related skeletal muscle wasting and osteoporosis. J Endocrinol 205:201–210

    Article  PubMed  CAS  Google Scholar 

  145. Rincon M, Muzumdar R, Atzmon G et al (2004) The paradox of the insulin/IGF-1 signaling pathway in longevity. Mech Ageing Dev 125:397–403

    Article  PubMed  CAS  Google Scholar 

  146. Roubenoff R, Parise H, Payette HA et al (2003) Cytokines, insulin-like growth factor 1, sarcopenia, and mortality in very old community-dwelling men and women: the Framingham Heart Study. Am J Med 115:429–435

    Article  PubMed  CAS  Google Scholar 

  147. Kaplan RC, McGinn AP, Pollak MN et al (2008) Total insulinlike growth factor 1 and insulinlike growth factor binding protein levels, functional status, and mortality in older adults. J Am Geriatr Soc 56:652–660

    Article  PubMed  Google Scholar 

  148. Saydah S, Graubard B, Ballard-Barbash R et al (2007) Insulin-like growth factors and subsequent risk of mortality in the United States. Am J Epidemiol 166:518–526

    Article  PubMed  Google Scholar 

  149. Laughlin GA, Barrett-Connor E, Criqui MH et al (2004) The prospective association of serum insulin-like growth factor I (IGF-I) and IGF-binding protein-1 levels with all cause and cardiovascular disease mortality in older adults: the Rancho Bernardo Study. J Clin Endocrinol Metab 89:114–120

    Article  PubMed  CAS  Google Scholar 

  150. Harrela M, Qiao Q, Koistinen R et al (2002) High serum insulin-like growth factor binding protein-1 is associated with increased cardiovascular mortality in elderly men. Horm Metab Res 34:144–149

    Article  PubMed  CAS  Google Scholar 

  151. Vasan RS, Sullivan LM, D’Agostino RB et al (2003) Serum insulin-like growth factor I and risk for heart failure in elderly individuals without a previous myocardial infarction: the Framingham Heart Study. Ann Intern Med 139:642–648

    PubMed  CAS  Google Scholar 

  152. Kaplan RC, McGinn AP, Pollak MN et al (2007) Association of total insulin-like growth factor-I, insulin-like growth factor binding protein-1 (IGFBP-1), and IGFBP-3 levels with incident coronary events and ischemic stroke. J Clin Endocrinol Metab 92:1319–1325

    Article  PubMed  CAS  Google Scholar 

  153. Kaplan RC, McGinn AP, Pollak MN et al (2008) High insulinlike growth factor binding protein 1 level predicts incident congestive heart failure in the elderly. Am Heart J 155:1006–1012

    Article  PubMed  CAS  Google Scholar 

  154. Khosla S, Riggs BL, Atkinson EJ et al (2006) Effects of sex and age on bone microstructure at the ultradistal radius: a population-based noninvasive in vivo assessment. J Bone Miner Res 21:124–131

    Article  PubMed  Google Scholar 

  155. Amin S, Riggs BL, Melton LJ 3rd et al (2007) High serum IGFBP-2 is predictive of increased bone turnover in aging men and women. J Bone Miner Res 22:799–807

    Article  PubMed  CAS  Google Scholar 

  156. Redman LM, Veldhuis JD, Rood J et al (2010) The effect of caloric restriction interventions on growth hormone secretion in nonobese men and women. Aging Cell 9:32–39

    Article  PubMed  CAS  Google Scholar 

  157. Heilbronn LK, de Jonge L, Frisard MI et al (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295:1539–1548

    Article  PubMed  CAS  Google Scholar 

  158. Thorner MO (2009) Statement by the Growth Hormone Research Society on the GH/IGF-I axis in extending health span. J Gerontol A Biol Sci Med Sci 64:1039–1044

    Article  PubMed  CAS  Google Scholar 

  159. Perls TT, Reisman NR, Olshansky SJ (2005) Provision or distribution of growth hormone for “antiaging”: clinical and legal issues. JAMA 294:2086–2090

    Article  PubMed  CAS  Google Scholar 

  160. Blackman MR (2008) Use of growth hormone secretagogues to prevent or treat the effects of aging: not yet ready for prime time. Ann Intern Med 149:677–679

    PubMed  Google Scholar 

  161. Li Y, Wang WJ, Cao H et al (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18:4897–4904

    Article  PubMed  CAS  Google Scholar 

  162. van Heemst D, Beekman M, Mooijaart SP et al (2005) Reduced insulin/IGF-1 signalling and human longevity. Aging Cell 4:79–85

    Article  PubMed  CAS  Google Scholar 

  163. Willcox BJ, Donlon TA, He Q et al (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci USA 105:13987–13992

    Article  PubMed  CAS  Google Scholar 

  164. Anselmi CV, Malovini A, Roncarati R et al (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12:95–104

    Article  PubMed  CAS  Google Scholar 

  165. Pawlikowska L, Hu D, Huntsman S et al (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8:460–472

    Article  PubMed  CAS  Google Scholar 

  166. Lunetta KL, D’Agostino RB Sr, Karasik D et al (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 8(Suppl 1):S13

    Article  PubMed  CAS  Google Scholar 

  167. Kuningas M, Magi R, Westendorp RG et al (2007) Haplotypes in the human Foxo1a and Foxo3a genes; impact on disease and mortality at old age. Eur J Hum Genet 15:294–301

    Article  PubMed  CAS  Google Scholar 

  168. Harrela M, Koistinen H, Kaprio J et al (1996) Genetic and environmental components of interindividual variation in circulating levels of IGF-I, IGF-II, IGFBP-1, and IGFBP-3. J Clin Invest 98:2612–2615

    Article  PubMed  CAS  Google Scholar 

  169. Hong Y, Pedersen NL, Brismar K et al (1996) Quantitative genetic analyses of insulin-like growth factor I (IGF-I), IGF-binding protein-1, and insulin levels in middle-aged and elderly twins. J Clin Endocrinol Metab 81:1791–1797

    Article  PubMed  CAS  Google Scholar 

  170. Salminen A, Kaarniranta K (2010) Insulin/IGF-1 paradox of aging: regulation via AKT/IKK/NF-kappaB signaling. Cell Signal 22:573–577

    Article  PubMed  CAS  Google Scholar 

  171. Labrie F, Belanger A, Simard J et al (1995) DHEA and peripheral androgen and estrogen formation: intracinology. Ann N Y Acad Sci 774:16–28

    Article  PubMed  CAS  Google Scholar 

  172. Longcope C (1995) Metabolism of dehydroepiandrosterone. Ann N Y Acad Sci 774:143–148

    Article  PubMed  CAS  Google Scholar 

  173. Traish AM, Kang HP, Saad F et al (2011) Dehydroepiandrosterone (DHEA) – a precursor steroid or an active hormone in human physiology. J Sex Med 8:2960–2982, quiz 2983

    Article  PubMed  CAS  Google Scholar 

  174. Orentreich N, Brind JL, Rizer RL et al (1984) Age changes and sex differences in serum dehydroepiandrosterone sulfate concentrations throughout adulthood. J Clin Endocrinol Metab 59:551–555

    Article  PubMed  CAS  Google Scholar 

  175. Vermeulen A (1995) Dehydroepiandrosterone sulfate and aging. Ann N Y Acad Sci 774:121–127

    Article  PubMed  CAS  Google Scholar 

  176. Sanders JL, Boudreau RM, Cappola AR et al (2010) Cardiovascular disease is associated with greater incident dehydroepiandrosterone sulfate decline in the oldest old: the cardiovascular health study all stars study. J Am Geriatr Soc 58:421–426

    Article  PubMed  Google Scholar 

  177. Tchernof A, Labrie F (2004) Dehydroepiandrosterone, obesity and cardiovascular disease risk: a review of human studies. Eur J Endocrinol 151:1–14

    Article  PubMed  CAS  Google Scholar 

  178. Maggio M, Lauretani F, Ceda GP et al (2007) Relationship between low levels of anabolic hormones and 6-year mortality in older men: the aging in the Chianti Area (InCHIANTI) study. Arch Intern Med 167:2249–2254

    Article  PubMed  CAS  Google Scholar 

  179. Glei DA, Goldman N (2006) Dehydroepiandrosterone sulfate (DHEAS) and risk for mortality among older Taiwanese. Ann Epidemiol 16:510–515

    Article  PubMed  Google Scholar 

  180. Enomoto M, Adachi H, Fukami A et al (2008) Serum dehydroepiandrosterone sulfate levels predict longevity in men: 27-year follow-up study in a community-based cohort (Tanushimaru study). J Am Geriatr Soc 56:994–998

    Article  PubMed  Google Scholar 

  181. Cappola AR, Xue QL, Walston JD et al (2006) DHEAS levels and mortality in disabled older women: the Women’s Health and Aging Study I. J Gerontol A Biol Sci Med Sci 61:957–962

    Article  PubMed  Google Scholar 

  182. Cappola AR, O’Meara ES, Guo W et al (2009) Trajectories of dehydroepiandrosterone sulfate predict mortality in older adults: the cardiovascular health study. J Gerontol A Biol Sci Med Sci 64:1268–1274

    Article  PubMed  CAS  Google Scholar 

  183. Morales AJ, Nolan JJ, Nelson JC et al (1994) Effects of replacement dose of dehydroepiandrosterone in men and women of advancing age. J Clin Endocrinol Metab 78:1360–1367

    Article  PubMed  CAS  Google Scholar 

  184. Allolio B, Arlt W (2002) DHEA treatment: myth or reality? Trends Endocrinol Metab 13:288–294

    Article  PubMed  CAS  Google Scholar 

  185. Grimley Evans J, Malouf R et al (2006) Dehydroepi­androsterone (DHEA) supplementation for cognitive function in healthy elderly people. Cochrane Database Syst Rev 18(4):CD006221

    Google Scholar 

  186. Arlt W, Callies F, van Vlijmen JC et al (1999) Dehydroepiandrosterone replacement in women with adrenal insufficiency. N Engl J Med 341:1013–1020

    Article  PubMed  CAS  Google Scholar 

  187. Kuro-o M, Matsumura Y, Aizawa H et al (1997) Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45–51

    Article  PubMed  CAS  Google Scholar 

  188. Saito Y, Yamagishi T, Nakamura T et al (1998) Klotho protein protects against endothelial dysfunction. Biochem Biophys Res Commun 248:324–329

    Article  PubMed  CAS  Google Scholar 

  189. Kuro-o M (2010) Klotho. Pflugers Arch 459:333–343

    Article  PubMed  CAS  Google Scholar 

  190. Utsugi T, Ohno T, Ohyama Y et al (2000) Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49:1118–1123

    Article  PubMed  CAS  Google Scholar 

  191. Kurosu H, Yamamoto M, Clark JD et al (2005) Suppression of aging in mice by the hormone klotho. Science 309:1829–1833

    Article  PubMed  CAS  Google Scholar 

  192. Saito Y, Nakamura T, Ohyama Y et al (2000) In vivo klotho gene delivery protects against endothelial dysfunction in multiple risk factor syndrome. Biochem Biophys Res Commun 276:767–772

    Article  PubMed  CAS  Google Scholar 

  193. Yamamoto M, Clark JD, Pastor JV et al (2005) Regulation of oxidative stress by the anti-aging hormone klotho. J Biol Chem 280:38029–38034

    Article  PubMed  CAS  Google Scholar 

  194. Nabeshima Y, Imura H (2008) Alpha-klotho: a regulator that integrates calcium homeostasis. Am J Nephrol 28:455–464

    Article  PubMed  CAS  Google Scholar 

  195. Urakawa I, Yamazaki Y, Shimada T et al (2006) Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770–774

    Article  PubMed  CAS  Google Scholar 

  196. Chang Q, Hoefs S, van der Kemp AW et al (2005) The beta-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–493

    Article  PubMed  CAS  Google Scholar 

  197. Imura A, Tsuji Y, Murata M et al (2007) Alpha-klotho as a regulator of calcium homeostasis. Science 316:1615–1618

    Article  PubMed  CAS  Google Scholar 

  198. Imura A, Iwano A, Tohyama O et al (2004) Secreted klotho protein in sera and CSF: implication for post-translational cleavage in release of klotho protein from cell membrane. FEBS Lett 565:143–147

    Article  PubMed  CAS  Google Scholar 

  199. Yamazaki Y, Imura A, Urakawa I et al (2010) Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem Biophys Res Commun 398:513–518

    Article  PubMed  CAS  Google Scholar 

  200. Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and mortality risk in older community-dwelling adults. J Gerontol A Biol Sci Med Sci 66:794–800

    Article  PubMed  CAS  Google Scholar 

  201. Semba RD, Cappola AR, Sun K et al (2011) Plasma klotho and cardiovascular disease in adults. J Am Geriatr Soc 59:1596–1601

    Article  PubMed  Google Scholar 

  202. Semba RD, Cappola AR, Sun K et al (2012) Relationship of low plasma klotho with poor grip strength in older community-dwelling adults: the InCHIANTI study. Eur J Appl Physiol 112:1215–1220

    Article  PubMed  Google Scholar 

  203. Arking DE, Becker DM, Yanek LR et al (2003) KLOTHO allele status and the risk of early-onset occult coronary artery disease. Am J Hum Genet 72:1154–1161

    Article  PubMed  CAS  Google Scholar 

  204. Imamura A, Okumura K, Ogawa Y et al (2006) Klotho gene polymorphism may be a genetic risk factor for atherosclerotic coronary artery disease but not for vasospastic angina in Japanese. Clin Chim Acta 371:66–70

    Article  PubMed  CAS  Google Scholar 

  205. Rhee EJ, Oh KW, Lee WY et al (2006) The differential effects of age on the association of KLOTHO gene polymorphisms with coronary artery disease. Metabolism 55:1344–1351

    Article  PubMed  CAS  Google Scholar 

  206. Kim Y, Kim JH, Nam YJ et al (2006) Klotho is a genetic risk factor for ischemic stroke caused by cardioembolism in Korean females. Neurosci Lett 407:189–194

    Article  PubMed  CAS  Google Scholar 

  207. Arking DE, Atzmon G, Arking A et al (2005) Association between a functional variant of the KLOTHO gene and high-density lipoprotein cholesterol, blood pressure, stroke, and longevity. Circ Res 96:412–418

    Article  PubMed  CAS  Google Scholar 

  208. Arking DE, Krebsova A, Macek M et al (2002) Association of human aging with a functional variant of klotho. Proc Natl Acad Sci USA 99:856–861

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Author affiliations: Center for Aging and Population Health, Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania (Jason L. Sanders, Robert M. Boudreau, Anne B. Newman)

Grants or financial support: JLS is supported by a National Research Service Award from the National Institute on Aging (1F30-AG038093-01). ABN and RMB are supported by grant numbers R01-AG023629 and U01-AG023744 from the National Institutes on Aging

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason L. Sanders Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sanders, J.L., Boudreau, R.M., Newman, A.B., Newman, A.B., Newman, A.B. (2012). Understanding the Aging Process Using Epidemiologic Approaches. In: Newman, A., Cauley, J. (eds) The Epidemiology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5061-6_12

Download citation

Publish with us

Policies and ethics