Skip to main content

Lifecourse Epidemiology and Aging

  • Chapter
  • First Online:
The Epidemiology of Aging

Abstract

Aging can be defined as deteriorative changes during postmaturational life that are associated with an increased risk of morbidity, disability and death. The process of human aging commences as early as conception with the inheritance of a specific genome, and does not cease until death. Environmental influences during intrauterine and early postnatal life modify gene expression with effects on phenotypes that persist into adulthood, and often result in a predisposition to age-related system decline. This developmental plasticity allows one genotype to give rise to a range of different physiological or morphological states in response to different prevailing environmental conditions during development. Thus, phenotypic alterations occur in response to environmental changes in just one generation. This plasticity has been shown to have specific effects on the musculoskeletal system. For example, lower weight at birth and at 1 year of age has been shown to be associated with a greater risk of osteoporosis and sarcopenia in later life. As an individual grows, the potential for plasticity reduces. Further research is required to obtain a full understanding of the lifecourse determinants of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BMC:

bone mineral content

BMD:

bone mineral density

DXA:

Dual-energy X-ray absorptiometry

References

  1. Bjorksten J (1958) A common molecular basis for the aging syndrome. J Am Geriatr Soc 6:740–748

    Google Scholar 

  2. Varizi H, Dragowska W, Allsopp RC et al (1994) Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc Natl Acad Sci USA 91:9857–9860

    Article  Google Scholar 

  3. Kirkwood TBL, Austad SN (2000) Why do we age? Nature 408:233–238

    Article  PubMed  CAS  Google Scholar 

  4. Williams G (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  5. Miller RA (1999) Kleemeier award lecture: are there genes for aging? J Gerontol A Biol Sci Med Sci 54:B297–B307

    Article  PubMed  CAS  Google Scholar 

  6. Lucas A (1991) Programming by early nutrition in man. In: Bock GR, Whelan J (eds) The childhood environment and adult disease. Wiley, New York, pp 38–55

    Google Scholar 

  7. Barker DJP (1995) Fetal origins of coronary heart disease. BMJ 311:171–174

    Article  PubMed  CAS  Google Scholar 

  8. Aihie Sayer A, Cooper C (2000) Early undernutrition: good or bad for longevity? In: Watson RR (ed) Handbook of nutrition in the aged. CRC Press, Boca Raton, pp 97–106

    Google Scholar 

  9. Barker DJP (1998) Programming the baby. In: Barker DJP (ed) Mothers, babies and health in later life. Churchill Livingstone, London, pp 13–41

    Google Scholar 

  10. McCance RA, Widdowson EM (1974) The determinants of growth and form. Proc R Soc Lond B 185:1–17

    Article  PubMed  CAS  Google Scholar 

  11. Smart JL, Massey RF, Nash SC et al (1987) Effects of early life undernutrition in artificially reared rats: subsequent body and organ growth. Br J Nutr 58:245–255

    Article  PubMed  CAS  Google Scholar 

  12. Chow BF, Lee CJ (1964) Effect of dietary restriction of pregnant rats on body weight gain of the offspring. J Nutr 82:10–18

    PubMed  CAS  Google Scholar 

  13. McCance RA, Widdowson EM (1962) Nutrition and growth. Proc R Soc Lond B 156:326–337

    CAS  Google Scholar 

  14. Roeder LM (1973) Effect of the level of nutrition on rates of cell proliferation and on RNA and protein synthesis in the rat. Nutr Rep Int 7:271–288

    CAS  Google Scholar 

  15. Winick M, Noble A (1966) Cellular response in rats during malnutrition at various ages. J Nutr 89:300–306

    PubMed  CAS  Google Scholar 

  16. Brailsford Robertson T, Ray LA (1920) On the growth of relatively long lived compared with that of relatively short lived animals. J Biol Chem 42:71–107

    Google Scholar 

  17. Stein Z, Susser M (1975) The Dutch famine, 1944–1945, and the reproductive process. I. Effects on six indices at birth. Pediatr Res 9:70–76

    PubMed  CAS  Google Scholar 

  18. Stanner SA, Bulmer K, Andres C et al (1997) Does malnutrition in utero determine diabetes and coronary heart disease in adulthood? Results from the Leningrad siege study, a cross sectional study. Br Med J 315:1342–1348

    Article  CAS  Google Scholar 

  19. Sayer AA, Cooper C, Evans JR et al (1998) Are rates of aging determined in utero? Age Ageing 27:579–583

    Article  PubMed  CAS  Google Scholar 

  20. Gunnell DJ, Frankel S, Nanchahal K et al (1996) Lifecourse exposure and later disease: a follow-up study based on a survey of family diet and health in pre-war Britain (1937–1939). Public Health 110:85–94

    Article  PubMed  CAS  Google Scholar 

  21. Gunnell DJ, Davey Smith G, Frankel S et al (1998) Childhood leg length and adult mortality: follow up of the Carnegie (Boyd Orr) Survey of Diet and Health in Pre-war Britain. J Epidemiol Community Health 52:142–152

    Article  PubMed  CAS  Google Scholar 

  22. Frankel S, Gunnell DJ, Peters TJ et al (1998) Childhood energy intake and adult mortality from cancer: the Boyd Orr Cohort study. Br Med J 316:499–504

    Article  CAS  Google Scholar 

  23. Goldberg AP, Hagberg JM (1990) Physical exercise in the elderly. In: Schneider EL, Rowe JW (eds) Handbook of the biology of aging. Academic, San Diego, pp 407–428

    Chapter  Google Scholar 

  24. Kayo T, Allison DB, Weindruch R et al (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98:5093–5098

    Article  PubMed  CAS  Google Scholar 

  25. Byers T, Guerrero N (1995) Epidemiologic evidence for vitamin C and vitamin E in cancer prevention. Am J Clin Nutr 62(suppl):1385S–1392S

    PubMed  CAS  Google Scholar 

  26. Clarke R, Armitage J (2002) Antioxidant vitamins and risk of cardiovascular disease. Review of large-scale randomized trials. Cardiovasc Drugs Ther 16:411–415

    Article  PubMed  CAS  Google Scholar 

  27. Shoulson I (1998) DATATOP: a decade of neuroprotective inquiry. Parkinson Study Group. Deprenyl and Tocophenerol Antioxidative Therapy of Parkinsonism. Ann Neurol 44(suppl 1):S160–S166

    PubMed  CAS  Google Scholar 

  28. Concensus Development Conference (1991) Prophylaxis and treatment of osteoporosis. Osteoporos Int 1:114–117

    Google Scholar 

  29. Cooper C (2003) Epidemiology of osteoporosis. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 5th edn. American Society for Bone and Mineral Research, Washington, DC, pp 307–313

    Google Scholar 

  30. Mehta G, Roach HI, Langley-Evans S et al (2002) Intrauterine exposure to a maternal low protein diet reduces adult bone mass and alters growth plate morphology in rats. Calcif Tissue Int 71:493–498

    Article  PubMed  CAS  Google Scholar 

  31. Oreffo ROC, Lashbrooke B, Roach HI et al (2003) Maternal protein deficiency affects mesenchymal stem cell activity in the developing offspring. Bone 33:100–107

    Article  PubMed  CAS  Google Scholar 

  32. Cooper C, Cawley MID, Bhalla A et al (1995) Childhood growth, physical activity and peak bone mass in women. J Bone Miner Res 10:940–947

    Article  PubMed  CAS  Google Scholar 

  33. Cooper C, Fall C, Egger P et al (1997) Growth in infancy and bone mass in later life. Ann Rheum Dis 56:17–21

    Article  PubMed  CAS  Google Scholar 

  34. Dennison EM, Syddall HE, Aihie Sayer A et al (2005) Birth weight and weight at 1 year are independent determinants of bone mass in the seventh decade: the Hertfordshire Cohort Study. Pediatr Res 57(4):582–586

    Article  PubMed  Google Scholar 

  35. Fall C, Hindmarsh P, Dennison E et al (1998) Programming of growth hormone secretion and bone mineral density in elderly men: a hypothesis. J Clin Endocrinol Metab 83:135–139

    Article  PubMed  CAS  Google Scholar 

  36. Phillips DI, Walker BR, Reynolds RM et al (2000) Low birth weight predicts elevated plasma cortisol concentrations in adults from 3 populations. Hypertension 35:1301–1306

    Article  PubMed  CAS  Google Scholar 

  37. Dennison E, Hindmarsh P, Fall C et al (1999) Profiles of endogenous circulating cortisol and bone mineral density in healthy elderly men. J Clin Endocrinol Metab 84:3058–3063

    Article  PubMed  CAS  Google Scholar 

  38. Harvey NCW, Javaid MK, Taylor P et al (2004) Umbilical cord calcium and maternal vitamin D status predict different lumbar spine bone parameters in the offspring at 9 years. J Bone Miner Res 19:1032

    Google Scholar 

  39. Dennison EM, Arden NK, Keen RW et al (2001) Birthweight, vitamin D receptor genotype and the programming of osteoporosis. Paediatr Perinat Epidemiol 15:211–219

    Article  PubMed  CAS  Google Scholar 

  40. Ferrari S, Rizzoli R, Slosman D et al (1998) Familial resemblance for bone mineral mass is expressed before puberty. J Clin Endocrinol Metab 83:358–361

    Article  PubMed  CAS  Google Scholar 

  41. Cooper C, Eriksson JG, Forsen T et al (2001) Maternal height, childhood growth and risk of hip fracture in later life: a longitudinal study. Osteoporos Int 12:623–629

    Article  PubMed  CAS  Google Scholar 

  42. Frontera WR, Hughes VA, Lutz KJ et al (1991) A cross-sectional study of muscle strength and mass in 45- to 78-yr-old men and women. J Appl Physiol 71:644–650

    PubMed  CAS  Google Scholar 

  43. World Health Organization International Longevity Centre, UK (2000) The implications of training for embracing a life course approach to health. World Health Organization. http://www.who.int/ageing/publications/lifecourse/alc_lifecourse_training_en.pdf. Accessed 11 June 2012

  44. Gale CR, Martyn CN, Cooper C et al (2007) Grip strength, body composition, and mortality. Int J Epidemiol 36:228–235

    Article  PubMed  Google Scholar 

  45. Aihie-Sayer A, Syddall HE, Gilbody HJ et al (2004) Does sarcopenia originate in early life? Findings from the Hertfordshire cohort study. J Gerontol A Biol Sci Med Sci 59:M930–M934

    Article  Google Scholar 

  46. Sayer AA, Syddall HE, Dennison EM et al (2004) Birth weight, weight at 1 year of age, and body composition in older men: findings from the Hertfordshire Cohort Study. Am J Clin Nutr 80:199–203

    PubMed  CAS  Google Scholar 

  47. Kensara OA, Wootton SA, Phillips DI et al (2005) Fetal programming of body composition: relation between birth weight and body composition measured with dual-energy x-ray absorptiometry and anthropometric methods in older Englishmen. Am J Clin Nutr 82:980–987

    PubMed  CAS  Google Scholar 

  48. Aihie Sayer A, Dennison EM, Syddall HE et al (2008) The developmental origins of sarcopenia using peripheral quantitative computed tomography to assess muscle size in older people. J Gerontol Med Sci 63:835–840

    Article  Google Scholar 

  49. Inskip HM, Godfrey KM, Martin HJ et al (2007) Southampton Women’s Survey Study Group. Size at birth and its relation to muscle strength in young adult women. J Intern Med 262:368–374

    Article  PubMed  CAS  Google Scholar 

  50. Khan HS, Narayan KM, Williamson DF et al (2000) Relation of birth weight to lean and fat thigh tissue in young men. Int J Obes Relat Metab Disord 24:667–672

    Article  Google Scholar 

  51. Maltin CA, Delday MI, Sinclair KD et al (2001) Impact of manipulations of myogenesis in utero on the performance of adult skeletal muscle. Reproduction 122:359–374

    Article  PubMed  CAS  Google Scholar 

  52. Dwyer CM, Stickland NC, Fletcher JM (1994) The influence of maternal nutrition on muscle-fiber number development in the porcine fetus and on subsequent postnatal-growth. J Anim Sci 72:911–917

    PubMed  CAS  Google Scholar 

  53. Rehfeldt C, Fiedler I, Weikard R et al (1993) It is possible to increase skeletal muscle fibre number in utero. Biosci Rep 13:213–220

    Article  PubMed  CAS  Google Scholar 

  54. Jensen CB, Storgaard H, Madsbad S et al (2007) Altered skeletal muscle fiber composition and size precede whole-body insulin resistance in young men with low birth weight. J Clin Endocrinol Metab 92(4):1530–1534

    Article  PubMed  CAS  Google Scholar 

  55. Bailey P, Holowacz T, Lasser AB (2001) The origin of skeletal muscle stem cells in the embryo and the adult. Curr Opin Cell Biol 13:679–689

    Article  PubMed  CAS  Google Scholar 

  56. Stewart CE (2004) The physiology of stem cells: potential for the elderly patient. J Musculoskelet Neuronal Interact 4:179–183

    PubMed  CAS  Google Scholar 

  57. Brach JS, Simonsick EM, Kritchevsky S et al (2004) Health, aging and body composition study research group. The association between physical function and lifestyle activity and exercise in the health, aging and body composition study. J Am Geriatr Soc 52:502–509

    Article  PubMed  Google Scholar 

  58. Bassey EJ (1997) Measurement of muscle strength and power. Muscle Nerve Suppl 5:S44–S46

    Article  PubMed  CAS  Google Scholar 

  59. Baker MK, Atlantis E, Fiatarone Singh MA (2007) Multimodal exercise programs for older adults. Age Ageing 36:375–381

    Article  PubMed  Google Scholar 

  60. Borst SE (2004) Interventions for sarcopenia and muscle weakness in older people. Age Ageing 33:548–555

    Article  PubMed  Google Scholar 

  61. Hawkins SA, Wiswell RA, Marcell TJ (2003) Exercise and the master athlete – a model of successful aging? J Gerontol A Biol Sci Med Sci 58:1009–1011

    Article  PubMed  Google Scholar 

  62. Sayer AA, Dennison EM, Syddall HE et al (2005) Type 2 diabetes, muscle strength, and impaired physical function: the tip of the iceberg? Diabetes Care 28:2541–2542

    Article  PubMed  Google Scholar 

  63. Hopman WM, Harrison MB, Coo H et al (2009) Associations between chronic disease, age and physical and mental health status. Chronic Dis Can 29(3):108–116

    PubMed  CAS  Google Scholar 

  64. Lanyon P, Muir K, Doherty S et al (2000) Assessment of a genetic contribution to osteoarthritis of the hip: sibling study. BMJ 321(7270):1179–1183

    Article  PubMed  CAS  Google Scholar 

  65. Sayer AA, Poole J, Cox V et al (2003) Weight from birth the 53 years: a longitudinal study of the influence on clinical hand osteoarthritis. Arthritis Rheum 48:1030–1033

    Article  PubMed  Google Scholar 

  66. Nevitt MC, Felson DT, Williams EN et al (2001) The effect of estrogen plus progestin on knee symptoms and related disability in postmenopausal women: the heart and estrogen/progestin replacement study, a ­randomized, double-blind, placebo-controlled trial. Arthritis Rheum 44:811–818

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Medical Research Council, the NIHR Biomedical Research Unit in Nutrition, University of Southampton, and the NIHR Biomedical Research Unit in Musculoskeletal Science, University of Oxford, for supporting this research. The manuscript was prepared by Mrs Gill Strange.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrus Cooper FMedSci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Edwards, M., Dennison, E., Sayer, A.A., Cooper, C. (2012). Lifecourse Epidemiology and Aging. In: Newman, A., Cauley, J. (eds) The Epidemiology of Aging. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5061-6_10

Download citation

Publish with us

Policies and ethics