Skip to main content

Manipulation of Ralstonia eutropha Carbon Storage Pathways to Produce Useful Bio-Based Products

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Ralstonia eutrophais a Gram-negative betaproteobacterium found natively in soils that can utilize a wide array of carbon sources for growth, and can store carbon intracellularly in the form of polyhydroxyalkanoate. Many aspects of R. eutrophamake it a good candidate for use in biotechnological production of polyhydroxyalkanoate and other bio-based, value added compounds. Manipulation of the organism’s carbon flux is a cornerstone to success in developing it as a biotechnologically relevant organism. Here, we examine the methods of controlling and adapting the flow of carbon in R. eutrophametabolism and the wide range of compounds that can be synthesized as a result. The presence of many different carbon utilization pathways and the custom genetic toolkit for manipulation of those pathways gives R. eutrophaa versatility that allows it to be a biotechnologically important organism.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Gas coefficient

C/N:

Carbon/nitrogen ratio

DAPI:

4′,6-Diamidino-2-Phenylindole

3HB:

3-Hydroxybutyrate

4HB:

4-Hydroxybutyrate

3HHx:

3-Hydroxyhexanoate

3H4MV:

3-Hydroxy-4-methyl valerate

3HV:

3-Hydroxyvalerate

IR:

Infrared

MCL:

Medium chain length

MMBPP:

Malaysia/MIT Biotechnology Partnership Programme

MTT:

3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide

PHA:

Polyhydroxyalkanoate

PhaB:

3-Acetoacetyl-CoA reductase

P(HB-co-HV):

Poly(hydroxybutyrate-co-hydroxyvalerate)

P(HB-co-HHx):

Poly(hydroxybutyrate-co-hydroxyhexanoate)

PhaC:

PHA synthase

PhaP:

Phasin protein

PhaZ:

PHA depolymerase

PHB:

Polyhydroxybutyrate

PLA:

Polylactic acid

POME:

Palm oil mill effluent

q:

Specific rate of gas substrate consumption, in kg/(kg·h)

RAD16-I::E:

Self-assembling peptide with a sequence of argininealanineand aspartate repeats ending in alanine and glutamate

SB RAS:

Siberian Branch, Russian Academy of Sciences

SCL:

Short chain length

TCA cycle:

Tricarboxylic acid cycle

XCO :

Volumetric concentration of carbon monoxide in a gas mixture, in %

References

  • Aboulmagd E, Voss I, Oppermann-Sanio FB, Steinbüchel A (2001) Heterologous expression of cyanophycin synthetase and cyanophycin synthesis in the industrial relevant bacteria Corynebacterium glutamicumand Ralstonia eutrophaand in Pseudomonas putida. Biomacromolecules 2:1338–1342

    Article  PubMed  CAS  Google Scholar 

  • Amass W, Amass A, Tighe BA (1998) Review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies. Polym Int 47:89–144

    Article  CAS  Google Scholar 

  • Anderson AJ, Dawes EA (1990) Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol Rev 54:450–472

    PubMed  CAS  Google Scholar 

  • Anderson AJ, Haywood GW, Dawes EA (1990) Biosynthesis and composition of bacterial poly(hydroxyalkanoates). Int J Biol Macromol 12:102–105

    Article  PubMed  CAS  Google Scholar 

  • Bowien B, Kusian B (2002) Genetics and control of CO(2) assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93

    Article  PubMed  CAS  Google Scholar 

  • Bramer CO, Steinbüchel A (2001) The methylcitric acid pathway in Ralstonia eutropha: new genes identified involved in propionate metabolism. Microbiol 147:2203–2214

    CAS  Google Scholar 

  • Brigham CJ, Budde CF, Holder JW, Zeng Q, Mahan AE, Rha C, Sinskey AJ (2010) Elucidation of beta-oxidation pathways in Ralstonia eutrophaH16 by examination of global gene expression. J Bacteriol 192:5454–5464

    Article  PubMed  CAS  Google Scholar 

  • Brigham CJ, Kurosawa K, Rha CK, Sinskey AJ (2011) Bacterial carbon storage to value added products. J Microbial Biochem Technol 83:S3–002

    Google Scholar 

  • Brigham CJ, Gai CS Lu J, Speth DR, Worden RM, Sinskey AJ (2012) Engineering Ralstonia eutrophafor production of isobutanol from CO2, H2, and O2. In: Lee JW (ed) Advanced biofuels and bioproducts.Springer, New York, DOI: 10.1007/978-1-4614-3348-4_39

    Google Scholar 

  • Bruland N, Voss I, Bramer C, Steinbüchel A (2009) Unravelling the C(3)/C(4) carbon metabolism in Ralstonia eutrophaH16. J Appl Microbiol 109:79–90

    PubMed  Google Scholar 

  • Budde CF, Mahan AE, Lu J, Rha C, Sinskey AJ (2010) Roles of multiple acetoacetyl coenzyme A reductases in polyhydroxybutyrate biosynthesis in Ralstonia eutrophaH16. J Bacteriol 192:5319–5328

    Article  PubMed  CAS  Google Scholar 

  • Budde CF, Riedel SL, Willis LB, Rha C, Sinskey AJ (2011) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutrophastrains. Appl Environ Microbiol 77:2847–2854

    Article  PubMed  CAS  Google Scholar 

  • Cavalheiro JM, Raposo RS, de Almeida MC, Teresa Cesario M, Sevrin C, da Grandfils C, Fonseca MM (2012) Effect of cultivation parameters on the production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) and poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) by Cupriavidus necatorusing waste glycerol. Bioresour Technol 111:391–397

    Article  PubMed  CAS  Google Scholar 

  • Choi JC, Shin HD, Lee YH (2003) Modulation of 3-hydroxyvalerate molar fraction in poly(3-hydroxybutyrate-3-hydroxyvalerate) using Ralstonia eutrophatransformant co-amplifying phbCand NADPH generation-related zwfgenes. Enz Microbial Technol 32:178–185

    Article  CAS  Google Scholar 

  • Cromwick AM, Foglia T, Lenz RV (1996) The microbial production of poly(hydroxyalkanoates) from tallow. Appl Microbiol Biotechnol 46:464–469

    Article  CAS  Google Scholar 

  • de Koning GJM, Lemstra PJ, Hill DJT, Carswell TG, O’Donnell JH (1992) Ageing phenomena in bacterial poly[(R)-3-hydroxybutyrate]: 1. A study on the mobility in poly[(R)-3-hydroxybutyrate] powders by monitoring the radical decay with temperature after γ-radiolysis at 77 K. Polymer 33:3295–3297

    Article  Google Scholar 

  • de la Plaza M, Palencia PF, Peláez C, Requena T (2004) Biochemical and molecular characterization of alpha-ketoisovalerate decarboxylase, an enzyme involved in the formation of aldehydes from amino acids by Lactococcus lactis. FEMS Microbiol Lett 238:367–374

    Article  PubMed  Google Scholar 

  • Du GC, Chen J, Yu J, Lun S (2001) Feeding strategy of propionic acid for production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with Ralstonia eutropha. Biochem Eng J 8:103–110

    Article  CAS  Google Scholar 

  • Ewering C, Heuser F, Benolken JK, Bramer CO, Steinbüchel A (2006) Metabolic engineering of strains of Ralstonia eutrophaand Pseudomonas putidafor biotechnological production of 2-methylcitric acid. Metab Eng 8:587–602

    Article  PubMed  CAS  Google Scholar 

  • Fakoussa RM, Hofrichter M (1999) Biotechnology and microbiology of coal degradation. Appl Microbiol Biotechnol 52:25–40

    Article  PubMed  CAS  Google Scholar 

  • Fuchtenbusch B, Steinbüchel A (1999) Biosynthesis of polyhydroxyalkanoates from low-rank coal liquefaction products by Pseudomonas oleovoransand Rhodococcus ruber. Appl Microbiol Biotechnol 52:91–95

    Article  PubMed  CAS  Google Scholar 

  • Fukui T, Abe H, Doi Y (2002) Engineering of Ralstonia eutrophafor production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from fructose and solid-state properties of the copolymer. Biomacromolecules 3:618–624

    Article  PubMed  CAS  Google Scholar 

  • Hassan MA, Nawata O, Shirai Y, Rahman NAA, Yee PL, Ariff AB, Ismail M, Karim A (2002) A proposal for zero emission from palm oil industry incorporating the production of polyhydroxyalkanoates from palm oil mill effluent. J Chem Eng Jpn 35:9–14

    Article  CAS  Google Scholar 

  • Hu SG, Jou CH, Yang MC (2003) Protein adsorption, fibroblast activity and antibacterial properties of poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) grafted with chitosan and chitooligosaccharide after immobilized with hyaluronic acid. Biomater 24:2685–2693

    Article  CAS  Google Scholar 

  • Ishida K, Wang Y, Inoue Y (2001) Comonomer unit composition and thermal properties of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)s biosynthesized by Ralstonia eutropha. Biomacromol 2:1285–1293

    Article  CAS  Google Scholar 

  • Ishizaki A, Tanaka K, Taga N (2001) Microbial production of poly-D-3-hydroxybutyrate from CO2. Appl Microbiol Biotechnol 57:6–12

    Article  PubMed  CAS  Google Scholar 

  • Ismail NR (2011) Bioplastic beauty. In: SIRIMLink. SIRIM Berhad, Shah Alam, pp 18–21

    Google Scholar 

  • Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191:3195–3202

    Article  PubMed  CAS  Google Scholar 

  • Jendrossek D, Kruger N, Steinbüchel A (1990) Characterization of alcohol dehydrogenase genes of derepressible wild-type Alcaligenes eutrophusH16 and constitutive mutants. J Bacteriol 172:4844–4851

    PubMed  CAS  Google Scholar 

  • Kahar P, Tsuge T, Taguchi K, Doi Y (2004) High yield production of polyhydroxyalkanoates from soybean oil by Ralstonia eutrophaand its recombinant strain. Polym Degrad Stabil 83:79–86

    Article  CAS  Google Scholar 

  • Kasuya K, Inoue Y, Doi Y (1996) Adsorption kinetics of bacterial PHB depolymerase on the surface of polyhydroxyalkanoate films. Int J Biol Macromol 19:35–40

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Lee BH, Kim BS (2005) Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Ralstonia eutropha. Biochem Eng J 23:169–174

    Article  CAS  Google Scholar 

  • Kuznetsov BN, Shchipko ML (1996) Air–steam gasification of brown coal in fluidized and circulated layers of catalytically active slag. Chem Int Sus Dev 4:447–453

    Google Scholar 

  • Kuznetsov BN, Shchipko ML, Golovin YG (1995) Some features of lignite gasification in fluidized bed of disposable catalyst. In: Pajares JA (ed) 8th International conference on coal science. Elsevier, Oviedo, pp 719–722

    Google Scholar 

  • Lee JN, Shin HD, Lee YH (2003) Metabolic engineering of pentose phosphate pathway in Ralstonia eutrophafor enhanced biosynthesis of poly-beta-hydroxybutyrate. Biotechnol Prog 19:1444–1449

    Article  PubMed  CAS  Google Scholar 

  • Li H, Opgenorth PH, Wernick DG, Rogers S, Wu TY, Higashide W, Malati P, Huo YX, Cho KM, Liao JC (2012) Integrated electromicrobial conversion of CO2to higher alcohols. Science 335:1596

    Article  PubMed  CAS  Google Scholar 

  • Lin K, Elbahloul Y, Steinbüchel A (2012) Physiological conditions conducive to high cell density and high cyanophycin content in Ralstonia eutrophastrain H16 possessing a KDPG aldolase gene-dependent addiction system. Appl Microbiol Biotechnol 93:1885–1894

    Article  PubMed  CAS  Google Scholar 

  • Loo CY, Lee WH, Tsuge T, Doi Y, Sudesh K (2005) Biosynthesis and characterization of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from palm oil products in a Wautersia eutrophamutant. Biotechnol Lett 27:1405–1410

    Article  PubMed  CAS  Google Scholar 

  • Lu J, Brigham CJ, Gai CS, Sinskey AJ (2012) Studies on the production of branched-chain alcohols in engineered Ralstonia eutropha. Appl Microbiol Biotechnol. Epub before print. DOI: 10.1007/s00253-012-4320-9

    Google Scholar 

  • Madden LA, Anderson AJ (1998) Synthesis and characterization of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) polymer mixtures produced in high-density fed-batch cultures of Ralstonia eutropha(Alcaligenes eutrophus). Macromolecules 31:5660–5667

    Article  CAS  Google Scholar 

  • Markelova NM, Shishatskaya EI, Vinnic YS, Cherdansev DV, Beletskiy II, Kyznecov MN, Zykova LD (2008) In vivojustification of using endobiliary stents made of bioresorbable polyhydroxyalkanoates. Macromol Symposia 269:82–91

    Article  CAS  Google Scholar 

  • Matsumoto K, Nakae S, Taguchi K, Matsusaki H, Seki M, Doi Y (2001) Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) copolymer from sugars by recombinant Ralstonia eutrophaharboring the phaC1 Psand the phaG Psgenes of Pseudomonassp. 61–3. Biomacromolecules 2:934–939

    Article  PubMed  CAS  Google Scholar 

  • Mifune J, Nakamura S, Fukui T (2008) Targeted engineering of Cupriavidus necatorchromosome for biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from vegetable oil. Can J Chem 86:621–627

    Article  Google Scholar 

  • Morinaga Y, Yamanaka S, Ishizaki A, Hirose Y (1978) Growth characteristics and cell composition of Alcaligenes eutrophusin chemostat culture. Agric Biol Chem 42:439–444

    Article  CAS  Google Scholar 

  • Noda I, Green PR, Satkowski MM, Schechtman LA (2005) Preparation and properties of a novel class of polyhydroxyalkanoate copolymers. Biomacromolecules 6:580–586

    Article  PubMed  CAS  Google Scholar 

  • Overhage J, Steinbüchel A, Priefert H (2002) Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutrophaH16. Appl Environ Microbiol 68:4315–4321

    Article  PubMed  CAS  Google Scholar 

  • Park JM, Kim TY, Lee SY (2011) Genome-scale reconstruction and in silico analysis of the Ralstonia eutrophaH16 for polyhydroxyalkanoate synthesis, lithoautotrophic growth, and 2-methyl citric acid production. BMC Syst Biol 5:101

    Article  PubMed  CAS  Google Scholar 

  • Peplinski K, Ehrenreich A, Doring C, Bomeke M, Reinecke F, Hutmacher C, Steinbüchel A (2010) Genome-wide transcriptome analyses of the ‘Knallgas’ bacterium Ralstonia eutrophaH16 with regard to polyhydroxyalkanoate metabolism. Microbiol 156:2136–2152

    Article  CAS  Google Scholar 

  • Philip S, Keshavarz T, Roy I (2007) Polyhydroxyalkanoates: biodegradable polymers with a range of applications. J Chem Technol Biotechnol 82:233–247

    Article  CAS  Google Scholar 

  • Plaggenborg R, Overhage J, Loos A, Archer JA, Lessard P, Sinskey AJ, Steinbüchel A, Priefert H (2006) Potential of Rhodococcusstrains for biotechnological vanillin production from ferulic acid and eugenol. Appl Microbiol Biotechnol 72:745–755

    Article  PubMed  CAS  Google Scholar 

  • Protopopov AV, Kochkina TA, Konstantinov EP, Shishatskaia EI, Efremov SN, Volova TG, Gitelson II (2005) Investigation of application of PHA coating to enhance biocompatibility of vascular stents. Dokl Biol Sci 401:85–87

    Article  PubMed  CAS  Google Scholar 

  • Protopopov AV, Konstantinov EI, Shishatskaya EI, Efremov SN, Volova TG, Gitelzon II (2008) Use of bioresorbable polyesters for increasing of endobiliary stent biocompatibility. Technol Zhivl Sys 5:25–34

    CAS  Google Scholar 

  • Reed DC, Barnard GC, Anderson EB, Klein LT, Gerngross TU (2006) Production and purification of self-assembling peptides in Ralstonia eutropha. Protein Expr Purif 46:179–188

    Article  PubMed  CAS  Google Scholar 

  • Reinecke F, Steinbüchel A (2009) Ralstonia eutrophastrain H16 as a model organism for PHA metabolism and for biotechnological production of technically interesting polymers. J Mol Microbiol Biotechnol 16:91–108

    Article  PubMed  CAS  Google Scholar 

  • Riedel SL, Bader J, Brigham CJ, Budde CF, Yusof ZA, Rha C, Sinskey AJ (2012a) Production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) by Ralstonia eutrophain high cell density palm oil fermentations. Biotechnol Bioeng 109:74–83

    Article  PubMed  CAS  Google Scholar 

  • Riedel SL, Brigham CJ, Budde CF, Bader J, Rha C, Stahl U, Sinskey AJ (2012b) Recovery of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) from Ralstonia eutrophacultures with non-halogenated solvents. Biotechnol Bioeng. Manuscript accepted for publication

    Google Scholar 

  • Saika A, Watanabe Y, Sudesh K, Abe H, Tsuge T (2011) Enhanced incorporation of 3-hydroxy-4-methylvalerate unit into biosynthetic polyhydroxyalkanoate using leucine as a precursor. AMB Express 1:6

    Article  PubMed  CAS  Google Scholar 

  • Savalieva ND (1979) Behavior of hydrogen bacteria towards carbon monoxide. Microbiol (Rus) 48:360–362

    Google Scholar 

  • Sayin B, Calia S, Marangoz AS (2006) Clinical implantation of vancomycin microspheres in blend with human/rabbit bone grafts to infected bone defects. Microencapsul 5:553–556

    Article  Google Scholar 

  • Scandola M, Ceccorulli G, Pizzoli M (1989) The physical aging of poly(D-[beta]-hydroxybutyrate). Macromol Chem Rapid Commun 10:47–50

    Article  CAS  Google Scholar 

  • Schlegel H, Lafferty R (1971) Novel energy and carbon sources. Adv Biochem Eng 1:143–168

    Article  CAS  Google Scholar 

  • Schwamborn M (1998) Chemical synthesis of polyaspartates: a biodegradable alternative to currently used polycarboxylate homo- and copolymers. Polym Degrad Stabil 59:39–45

    Article  CAS  Google Scholar 

  • Schwartz E, Voigt B, Zuelhke D, Pohlmann A, Lenz O, Albrecht D, Schwarze A, Kohlmann Y, Krause C, Hecker M, Friedrich B (2009) A proteomic view of the facultatively chemolithoautotrophic lifestyle of Ralstonia eutrophaH16. Proteomics 9:5132–5142

    Article  PubMed  CAS  Google Scholar 

  • Sevastianov VI, Perova NV, Shishatskaya EI, Kalacheva GS, Volova TG (2003) Production of purified polyhydroxyalkanoates (PHAs) for applications in contact with blood. J Biomater Sci Polym Ed 14:1029–1042

    Article  PubMed  CAS  Google Scholar 

  • Shang L, Yim SC, Park HG, Chang HN (2004) Sequential feeding of glucose and valerate in a fed-batch culture of Ralstonia eutrophafor production of poly(hydroxybutyrate-co-hydroxyvalerate) with high 3-hydroxyvalerate fraction. Biotechnol Prog 20:140–144

    Article  PubMed  CAS  Google Scholar 

  • Shchipko ML, Kuznetsov BN, Volova TG, Rudkovskii AV (2003) Development of the process of brown coal gasification for the production of syngas for polyhydroxyalkanoate biosynthesis. Chem Solid Fuel 5:58–67

    Google Scholar 

  • Shishatskaya EI (2006) Biocompatible and functional properties of hybrid composite polyhydroxyalkanoate/hydroxyapatite. Bull Trans Artif Org 3:34–38

    Google Scholar 

  • Shishatskaya EI (2007) Cellular matrices from bioresorbable polyhydroxyalkanoates. Cell Trans Tissue Eng 2:68–76

    Google Scholar 

  • Shishatskaya EI, Volova TG (2004) A comparative investigation of biodegradable polyhydroxyalkanoate films as matrices for in vitro cell cultures. J Mater Sci Mater Med 15:915–923

    Article  PubMed  CAS  Google Scholar 

  • Shishatskaya EI, Volova TG, Efremov SN, Puzyr’ AP, Mogil’naya OA (2002a) Tissue response to biodegradable suture threads made of polyhydroxyalkanoates. Biomed Eng 36:210–217

    Article  Google Scholar 

  • Shishatskaya EI, Volova TG, Gitelson II (2002b) In vivotoxicological evaluation of polyhydroxyalkanoates. Dokl Biol Sci 383:109–111

    Article  PubMed  CAS  Google Scholar 

  • Shishatskaya EI, Volova TG, Puzyr AP, Mogilnaya OA, Efremov SN (2004) Tissue response to the implantation of biodegradable polyhydroxyalkanoate sutures. J Mater Sci Mater Med 15:719–728

    Article  PubMed  CAS  Google Scholar 

  • Shishatskaya EI, Volova TG, Zhemchugova AV (2005) A study of biodegradable polyhydroxyalkanoates as anti-tumor drug carrier. Antibiotik Khim 2:3–14

    Google Scholar 

  • Shishatskaya EI, Voinova ON, Goreva AV, Mogilnaya OA, Volova TG (2008) Biocompatibility of polyhydroxybutyrate microspheres: in vitro and in vivo evaluation. J Mater Sci Mater Med 19:2493–2502

    Article  PubMed  CAS  Google Scholar 

  • Shishatskaya EI, Goreva AV, Voinova ON, Kalacheva GS, Volova TG (2009) Distribution and resorption of polymeric microparticles in visceral organs of laboratory animals after intravenous injection. J Siberian Fed Univ Biol 4:453–465

    Google Scholar 

  • Stasishina GN, Volova TG (1996) The strain of the bacterium Alcaligenes eutrophus– a producer of protein biomass. BI1

    Google Scholar 

  • Tanadchangsaeng N, Kitagawa A, Yamamoto T, Abe H, Tsuge T (2009) Identification, biosynthesis, and characterization of polyhydroxyalkanoate copolymer consisting of 3-hydroxybutyrate and 3-hydroxy-4-methylvalerate. Biomacromol 10:2866–2874

    Article  CAS  Google Scholar 

  • Tanaka K, Ishizaki A, Kanamaru T, Kawano T (1995) Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol Bioeng 45:268–275

    Article  PubMed  CAS  Google Scholar 

  • Tokiwa Y, Ugwu CU (2007) Biotechnological production of (R)-3-hydroxybutyric acid monomer. J Biotechnol 132:264–272

    Article  PubMed  CAS  Google Scholar 

  • Ugwu CU, Tokiwa Y, Aoyagi H, Uchiyama H, Tanaka H (2008) UV mutagenesis of Cupriavidus necatorfor extracellular production of (R)-3-hydroxybutyric acid. J Appl Microbiol 105:236–242

    Article  PubMed  CAS  Google Scholar 

  • Valentin HE, Steinbüchel A (1994) Application of enzymatically synthesized short-chain-length hydroxy fatty acid coenzyme A thioesters for assay of polyhydroxyalkanoic acid biosynthesis. Appl Microbiol Biotechnol 40:699–709

    Article  CAS  Google Scholar 

  • Volova TG, Voinov NA (2003) Kinetic parameters of a culture of the hydrogen-oxidizing Ralstonia eutropha, grown under the regimen of biosynthesis of polyhydroxybutyrate. Prikl Biokhim Mikrobiol 39:189–193

    PubMed  CAS  Google Scholar 

  • Volova TG, Voinov NA (2004) Study of Ralstonia eutrophaculture producing polyhydroxyalkanoates on products of coal processing. Prikl Biokhim Mikrobiol 40:296–300

    PubMed  CAS  Google Scholar 

  • Volova TG, Fyodorova YV, Trubachev IN (1980) Protein production from hydrogen. Nauka, Novosibirsk

    Google Scholar 

  • Volova TG, Terskov IA, Sidko FY (1985) Microbial synthesis from hydrogen. Nauka, Novosibirsk, p 148

    Google Scholar 

  • Volova TG, Kalacheva GS, Trubachev IN, Filippova VK (1987) The effect of physicochemical factors on growth and biochemical composition of carboxydobacteria. Microbiol (Rus) 57:973–978

    Google Scholar 

  • Volova TG, Guseinov OA, Kalacheva GS, Medvedeva SE, Puzyr AP (1988a) The effect of carbon monoxide on metabolism and structure of carboxydobacteria. Microbiol (Rus) 57:793–797

    CAS  Google Scholar 

  • Volova TG, Kalacheva GS, Trubachev IN, Filippova VK (1988b) A study of physiological and biochemical parameters of carboxydobacteria limited by deficiency of mineral elements. Microbiol (Rus) 57:61–64

    CAS  Google Scholar 

  • Volova TG, Guseinov OA, Kalacheva GS, Medvedeva SE, Puzyr AP (1993) Effect of carbon monoxide on metabolism and ultrastructure of carboxydobacteria. World Appl Microbiol Biotechnol 9:160–163

    Article  CAS  Google Scholar 

  • Volova TG, Kalacheva GS, Altukhova OV (2001) Autotrophic synthesis of polyalkanoates by Alcaligenes eutrophusin the presence of carbon monoxide. Mikrobiologia 70:745–752

    CAS  Google Scholar 

  • Volova TG, Shishatskaya EI, Sevastinov VI, Perova N (2003) Results of biomedical investigations of PHB and PHB/PHV fibers. Biochem Eng J 16:125–133

    Article  CAS  Google Scholar 

  • Volova TG, Sevastinov VI, Shishatskaya EI (2006a) Polyhydroxyalkanoates – biodegradable polymers for medicine. Platina, Krasnoyarsk, p 287

    Google Scholar 

  • Volova TG, Voinov NA, Muratov VS, Bubnov NV, Gurulev KV, Kalacheva GS, Gorbunova NV, Plotnikov VF, Zhila NO, Shishatskaya EI, Belyaeva OG (2006b) Pilot production of biodegradable polymers. Biotekhnologiya 6:28–34

    Google Scholar 

  • Volova TG, Zhila NO, Kalacheva GS, Sokolenko VA, Sinskey AJ (2011) Synthesis of 3-hydroxybutyrate-CO-4-hydroxybutyrate copolymers by hydrogen-oxidizing bacteria. Prikl Biokhim Mikrobiol 47:544–550

    PubMed  CAS  Google Scholar 

  • Voss I, Steinbüchel A (2006) Application of a KDPG-aldolase gene-dependent addiction system for enhanced production of cyanophycin in Ralstonia eutrophastrain H16. Metab Eng 8:66–78

    Article  PubMed  CAS  Google Scholar 

  • Wang ZX, Brämer CO, Steinbüchel A (2003) The glyoxylate bypass of Ralstonia eutropha. FEMS Microbiol Lett 228:63–71

    Article  PubMed  CAS  Google Scholar 

  • Yamada M, Okada Y, Yoshida T, Nagasawa T (2008) Vanillin production using Escherichia colicells over-expressing isoeugenol monooxygenase of Pseudomonas putida. Biotechnol Lett 30:665–670

    Article  PubMed  CAS  Google Scholar 

  • Yang YY, Chung TS, Ng NP (2001) Morphology, drug istribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomater 22:231–241

    Article  CAS  Google Scholar 

  • Yang YH, Brigham CJ, Budde CF, Boccazzi P, Willis LB, Hassan MA, Yusof ZA, Rha C, Sinskey AJ (2010) Optimization of growth media components for polyhydroxyalkanoate (PHA) production from organic acids by Ralstonia eutropha. Appl Microbiol Biotechnol 87:2037–2045

    Article  PubMed  CAS  Google Scholar 

  • Yee PL, Hassan MA, Shirai Y, Wakisaka M, Karim MIA (2003) Continuous production of organic acids from palm oil mill effluent with sludge recycle by the freezing-thawing method. J Chem Eng Jpn 36:707–710

    Article  CAS  Google Scholar 

  • York GM, Lupberger J, Tian J, Lawrence AG, Stubbe J, Sinskey AJ (2003) Ralstonia eutrophaH16 encodes two and possibly three intracellular Poly[D-(−)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185:3788–3794

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Si Y (2004) Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutrophaon short chain fatty acids. Biotechnol Prog 20:1015–1024

    Article  PubMed  CAS  Google Scholar 

  • Yu ST, Lin CC, Too JR (2005) PHBV production by Ralstonia eutrophain a continuous stirred tank reactor. Process Biochem 40:2729–2734

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John W. Quimby for helpful suggestions and critical review of the manuscript. This manuscript was made possible, in part, by the work of the MIT/Malaysia Biotechnology Partnership Programme (MMBPP). The authors would like to thank the collaborators of this project for their support. This manuscript was also made possible, in part, by Project of SB RAS No. 96 and Project “Biotechnologies of novel biomaterials” (Agreement No. 11.G34.31.0013) in accordance with Resolution No. 220 of the Government of the Russian Federation of April 9, 2010, “On measures designed to attract leading scientists to the Russian institutions of higher learning.” The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony J. Sinskey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brigham, C.J., Zhila, N., Shishatskaya, E., Volova, T.G., Sinskey, A.J. (2012). Manipulation of Ralstonia eutropha Carbon Storage Pathways to Produce Useful Bio-Based Products. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_17

Download citation

Publish with us

Policies and ethics