Skip to main content

Metabolic Engineering of Microorganisms for Vitamin C Production

  • Chapter
  • First Online:
Reprogramming Microbial Metabolic Pathways

Part of the book series: Subcellular Biochemistry ((SCBI,volume 64))

Abstract

Vitamin C, an important organic acid, is widely used in the industries of pharmaceuticals, cosmetics, food, beverage and feed additives. Compared with the Reichstein method, biotechnological production of vitamin C is an attractive approach due to the low cost and high product quality. In this chapter, biosynthesis of vitamin C, including one-step fermentation processes and two-step fermentation processes are discussed and compared. Furthermore, the prospects of the biotechnological production of vitamin C are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA-2G:

2-O-alpha-D-glucopyranosyl-L-ascorbic acid

2,5-DKG:

2,5-diketo-D-gluconate

2,5-DKGR:

2,5-diketo-D-gluconic acid reductase

GUL oxidase:

L-gulono-1,4-lactone oxidase

2-KLG:

2-keto-L-gulonic acid

2-KLGR:

2-keto-L-gulonic acid reductase

ORFs:

open reading frames

PQQ:

pyrro-quinoline quinone

SDH:

L-sorbose dehydrogenase

SLDH:

D-sorbitol dehydrogenase

SNDH:

L-sorbosone dehydrogenase

References

  • Ameyama M, Matsushita K, Ohno Y, Shinagawa E, Adachi O (1981) Existence of a novel prosthetic group, PQQ, in membrane-bound, electron transport chain-linked, primary dehydrogenases of oxidative bacteria. FEBS Lett 130:179–183

    Article  PubMed  CAS  Google Scholar 

  • Anderson S, Marks CB, Lazarus R, Miller J, Stafford K, Seymour J, Light D, Rastetter W, Estell D (1985) Production of 2-keto-L-gulonate, an intermediate in L-ascorbate synthesis, by a genetically modified Erwinia herbicola. Science 230:144–149

    Article  PubMed  CAS  Google Scholar 

  • Anthony C, Zatman LJ (1967) The microbial oxidation of methanol. The prosthetic group of the alcohol dehydrogenase of Pseudomonas sp. M27: a new oxidoreductase prosthetic group. Biochem J 104(3):960–969

    PubMed  CAS  Google Scholar 

  • Banta S, Swanson BA, Wu S, Jarnagin A, Anderson S (2002) Optimizing an artificial metabolic pathway: engineering the cofactor specificity of Corynebacterium 2,5-diketo-D-gluconic acid reductase for use in vitamin C biosynthesis. Biochemistry 41:6226–6236

    Article  PubMed  CAS  Google Scholar 

  • Bremus C, Herrmann U, Bringer-Meyer S, Sahm H (2006) The use of microorganisms in L-ascorbic acid production. J Biotechnol 124:196–205

    Article  PubMed  CAS  Google Scholar 

  • Cai L, Yuan MQ, Li ZJ, Chen JC, Chen GQ (2012) Genetic engineering of Ketogulonigenium vulgare for enhanced production of 2-keto-L-gulonic acid. J Biotechnol 157:320–325

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Chen CS, Li Y, Yin GL (2000) Studies on gene knocking out of 2-keto aldose reductases from Erwinia sp. SCB125. Acta Microbiol Sin 40(5):475–481

    Google Scholar 

  • Conklin PL, Williams EH, Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci U S A 93:9970–9974

    Article  PubMed  CAS  Google Scholar 

  • Feng S, Zhang Z, Zhang CG, Zhang ZZ (2000) Effect of Bacillus megaterium on Gluconobacter oxydans in mixed culture. Chin J Appl Ecol 11:119–122

    CAS  Google Scholar 

  • Giridhar R, Srivastava AK (2000) Fed-batch cultivation of Acetobacter suboxydans for the microbial oxidation of D-sorbitol to L-sorbose. Bioproc Eng 23:575–577

    Article  CAS  Google Scholar 

  • Giridhar R, Srivastava AK (2001) Computer coupled substrate feeding strategies for efficient conversion of D-sorbitol to L-sorbose in fed-batch culture. Proc Biochem 36:829–834

    Article  CAS  Google Scholar 

  • Giridhar RN, Srivastava AK (2002) Productivity improvement in L-sorbose biosynthesis by fedbatch cultivation of Gluconobacter oxydans. J Biosci Bioeng 94:34–38

    PubMed  CAS  Google Scholar 

  • Hauge JG (1964) Glucose dehydrogenase of bacterium anitratum: an enzyme with a novel prosthetic group. J Biol Chem 239:3630–3639

    PubMed  CAS  Google Scholar 

  • Isherwood FA, Cruickshank DH (1954) Chromatographic separation and analysis of mixtures of pyruvic, oxalacetic and α-ketoglutaric acids. Nature 173:121–122

    Article  PubMed  CAS  Google Scholar 

  • Ji AG, Gao PJ (1998) Synthesis of 2-keto-L-gulonic acid from gluconic acid by co-immobilized Gluconobacter oxydans and Corynebacterium sp. Biotechnol Lett 20:939–942

    Article  CAS  Google Scholar 

  • Jiang YY, Guo ZY, Zhang CG (1997) Study on the purification of 2-keto-L-gulonate reductase and its physical, chemical and enzymic properties. Chin J Biotechnol 13:400–405

    CAS  Google Scholar 

  • Leduc S, de Troostembergh JC, Lebeault JM (2004) Folate requirements of the 2-keto-L-gulonic acid-­producing strain Ketogulonigenium vulgare LMP P-20356 in L-sorbose/CSL medium. Appl Microbiol Biotechnol 65:163–167

    Google Scholar 

  • Li Q, Diao JY, Xiang BT, Cao ZA (1996) Studies on metabolism of nitrogen source in fermentation of 2-keto-L-gulonic acid. Acta Microbiol Sin 1:19–24

    Google Scholar 

  • Lin HY, Chen CS, Yin GL (1999) Intergeneric cell fusion of Corynebacterium and Erwinia. Chin Microbiol 26:3–6

    Google Scholar 

  • Liu LM, Chen KJ, Zhang J, Liu J, Chen J (2011a) Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol 156:182–187

    Article  PubMed  CAS  Google Scholar 

  • Liu LM, Li Y, Zhang J, Zhou ZM, Liu J, Li XM, Zhou JW, Du GC, Wang L, Chen J (2011b) Complete genome sequence of the industrial strain Ketogulonicigenium vulgare WSH-001. J Bacteriol 193:6108–6109

    Article  PubMed  CAS  Google Scholar 

  • Liu LM, Li Y, Zhang J, Zou W, Zhou ZM, Liu J, Li XM, Wang L, Chen J (2011c) Complete genome sequence of the industrial strain Bacillus megaterium WSH-002. J Bacteriol 193:6389–6390

    Article  PubMed  CAS  Google Scholar 

  • Lu SJ, Jun W, Yao JM, Yu ZL (2003) Study on the effect of mutated Bacillus megaterium in two-stage fermentation of vitamin C. Plasma Sci Technol 5:2011–2016

    Article  Google Scholar 

  • Lv SX, Feng S, Zhang ZZ, Liu Y, Xie ZW, An HY (2001) The effect of Bacillus megaterium in vitamin C two-step fermentation. Acta Microbiol Sin 28:10–13

    Google Scholar 

  • Moonmangmee D, Adachi O, Ano Y, Shinagawa E, Toyama H, Theeragool G, Lotong N, Matsushita K (2000) Isolation and characterization of thermotolerant Gluconobacter strains catalyzing oxidative fermentation at higher temperatures. Biosci Biotechnol Biochem 64:2306–2315

    Article  PubMed  CAS  Google Scholar 

  • Petrescu S, Hulea SA, Stan R, Avram D, Herlea V (1992) A yeast strain that uses D-galacturonic acid as a substrate for L-ascorbic acid biosynthesis. Biotechnol Lett 14:1–6

    Article  CAS  Google Scholar 

  • Rao YM, Sureshkumar GK (2000) Direct biosynthesis of ascorbic acid from glucose by Xanthomonas campestris through induced free-radicals. Biotechnol Lett 22:407–411

    Article  CAS  Google Scholar 

  • Reichstein T, Grussner A (1934) A productive synthesis of L-arcorbic acid (C-vitamin). Helv Chim Acta 17:311–328

    Article  CAS  Google Scholar 

  • Running JA, Severson DK, Schneider KJ (2002) Extracellular production of L-ascorbic acid by Chlorella protothecoides, Prototheca species, and mutants of P. moriformis during aerobic culturing at low pH. J Ind Microbiol Biotechnol 29(2):93–98

    Article  PubMed  CAS  Google Scholar 

  • Saito Y, Ishii Y, Hayashi H, Imao Y, Akashi T, Yoshikawa K, Noguchi Y, Soeda S, Yoshida M, Niwa M, Hosoda J, Shimomura K (1997) Cloning of genes coding for L-sorbose and L-sorbosone dehydrogenases from Gluconobacter oxydans and microbial production of 2-Keto-L-Gulonate, a precursor of L-ascorbic acid, in a recombinant G-oxydans strain. Appl Environ Microbiol 63:454–460

    PubMed  CAS  Google Scholar 

  • Saito Y, Ishii Y, Hayashi H, Yoshikawa K, Noguchi Y, Yoshida S, Soeda S, Yoshida M (1998) Direct fermentation of 2-keto-L-gulonic acid in recombinant Gluconobacter oxydans. Biotechnol Bioeng 58:309–315

    Article  PubMed  CAS  Google Scholar 

  • Salisbury SA, Forrest HS, Cruse WB, Kennard O (1979) A novel coenzyme from bacterial primary alcohol dehydrogenases. Nature 280:843–844

    Article  PubMed  CAS  Google Scholar 

  • Sanli G, Blaber SI, Blaber M (2001) Reduction of wobble-position GC bases in Corynebacteria genes and enhancement of PCR and heterologous expression. J Mol Microbiol Biotechnol 3:123–126

    PubMed  CAS  Google Scholar 

  • Sauer M, Branduardi P, Valli M, Porro D (2004) Production of L-ascorbic acid by metabolically engineered Saccharomyces cerevisiae and Zygosaccharomyces bailii. Appl Environ Microbiol 70:6086–6091

    Article  PubMed  CAS  Google Scholar 

  • Shinjoh M, Tomiyama N, Asakura A, Hoshino T (1995) Cloning and nucleotide sequencing of the membrane-bound L-sorbosone dehydrogenase gene of Acetobacter liquefaciens IFO 12258 and its expression in Gluconobacter oxydans. Appl Environ Microbiol 61:413–420

    PubMed  CAS  Google Scholar 

  • Smirnoff N (2000) Ascorbic acid: metabolism and functions of a multi-facetted molecule. Curr Opin Plant Biol 3:229–235

    PubMed  CAS  Google Scholar 

  • Sonoyama T, Tani H, Matsuda K, Kageyama B, Tanimoto M, Kobayashi K, Yagi S, Kyotani H, Mitsushima K (1982) Production of 2-keto-L-gulonic acid from D-glucose by two-stage fermentation. Appl Environ Microbiol 43:1064–1069

    PubMed  CAS  Google Scholar 

  • Srivastava AK, Lasrado PR (1998) Fed-batch sorbitol to sorbose fermentation by A suboxydans. Bioproc Eng 18(6):457–461

    CAS  Google Scholar 

  • Sugisawa T, Hoshino T, Masuda S, Nomura S, Setoguchi Y, Tazoe M, Shinjoh M, Someha S, Fujiwara A (1990) Microbial production of 2-keto-L-gulonic acid from L-sorbose and D-sorbitol by Gluconobacter melanogenus. Agr Biol Chem 54:1201–1209

    Article  CAS  Google Scholar 

  • Sugisawa T, Miyazaki T, Hoshino T (2005) Microbial production of L-ascorbic acid from D-sorbitol, L-sorbose, L-gulose, and L-sorbosone by Ketogulonicigenium vulgare DSM 4025. Biosci Biotechnol Biochem 69:659–662

    Article  PubMed  CAS  Google Scholar 

  • Sybesma W, Starrenburg M, Kleerebezem M, Mierau I, de Vos WM, Hugenholtz J (2003) Increased production of folate by metabolic engineering of Lactococcus lactis. Appl Environ Microbiol 69:3069–3076

    Article  PubMed  CAS  Google Scholar 

  • Touster O (1962) Carbohydrate metabolism. Ann Rev Biochem 31:407–450

    Article  PubMed  CAS  Google Scholar 

  • Tsukada Y, Perlman D (1972) The fermentation of L-sorbose by Gluconobacter melanogenus. I. General characteristics of the fermentation. Biotechnol Bioeng 14:799–810

    Article  PubMed  CAS  Google Scholar 

  • Westerling J, Frank J, Duine JA (1979) The prosthetic group of methanol dehydrogenase from Hyphomicrobium X: electron spin resonance evidence for a quinone structure. Biochem Biophys Res Commun 87:719–724

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  • Xia ZX, Dai WW, He YN, White SA, Mathews FS, Davidson VL (2003) X-ray structure of methanol dehydrogenase from Paracoccus denitrificans and molecular modeling of its interactions with cytochrome c-551i. J Biol Inorg Chem 8:843–854

    Article  PubMed  CAS  Google Scholar 

  • Xiong XH, Han S, Wang JH, Jiang ZH, Chen W, Jia N, Wei HL, Cheng H, Yang YX, Zhu B, You S, He JY, Hou W, Chen MX, Yu CJ, Jiao YH, Zhang WC (2011) Complete genome sequence of the bacterium Ketogulonicigenium vulgare Y25. J Bacteriol 193:315–316

    Article  PubMed  CAS  Google Scholar 

  • Xu A, Yao J, Yu L, Lv S, Wang J, Yan B, Yu Z (2004) Mutation of Gluconobacter oxydans and Bacillus megaterium in a two-step process of L-ascorbic acid manufacture by ion beam. J Appl Microbiol 96:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Yan B, Xu A, Zhang W, Zhou W, Wang J, Yao JM, Yu ZL (2006) Accumulation of 2-keto-L-gulonate at 33 degrees C by a thermotolerant Gluconobacter oxydans mutant obtained by ion beam implantation. Plasma Sci Technol 8:237–241

    Article  CAS  Google Scholar 

  • Yang FC, Lim YH (1997) Kinetic study of the bioconversion of D-sorbitol to L-sorbose by Acetobacter pasteurianus. Proc Biochem 32:233–236

    Article  Google Scholar 

  • Yang F, Jia Q, Xiong Z, Zhang X, Wu H, Zhao Y, Yang J, Zhu J, Dong J, Xue Y, Sun L, Shen Y, Jin Q (2006) Complete genome analysis of Ketogulonigenium sp. WB0104. Chin Sci Bull 51(8):941–945

    Article  CAS  Google Scholar 

  • Yang XP, Zhong GF, Lin JP, Mao DB, Wei DZ (2010) Pyrroloquinoline quinone biosynthesis in Escherichia coli through expression of the Gluconobacter oxydans pqqABCDE gene cluster. J Ind Microbiol Biotechnol 37:575–580

    Article  PubMed  CAS  Google Scholar 

  • Yin GL, He JM, Ren SX, Song Q, Ye Q, Lin YH, Chen CS, Guo XY (1997) Production of vitamin C precursor-2-leto-L-gulonic acid from L-sorbose by a novel bacterial component system of SCB329-SCB933. Ind Microbiol 27:1–7

    CAS  Google Scholar 

  • Zhang L, Wang Z, Xia Y, Kai G, Chen W, Tang K (2007) Metabolic engineering of plant L-ascorbic acid biosynthesis: recent trends and applications. Crit Rev Biotechnol 27:173–182

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Liu J, Shi ZP, Liu LM, Chen J (2010) Manipulation of B-megaterium growth for efficient 2-KLG production by K-vulgare. Process Biochem 45:602–606

    Article  CAS  Google Scholar 

  • Zhang J, Zhou JW, Liu J, Chen KJ, Liu LM, Chen J (2011) Development of chemically defined media supporting high cell density growth of Ketogulonicigenium vulgare and Bacillus megaterium. Bioresour Technol 102:4807–4814

    Article  PubMed  CAS  Google Scholar 

  • Zhao SG, Yao LM, Su CX, Wang T, Wang J, Tang ML, Yu ZL (2008) Purification and properties of a new L-sorbose dehydrogenase accelerative protein from Bacillus megaterium bred by ion-beam implantation. Plasma Sci Technol 10:398–402

    Article  CAS  Google Scholar 

  • Zhou B, Li Y, Liu YP, Zhang ZZ, Zhu KL, Liao DM, Gao YT (2002) Microbiological eco-regulation in Vc two-step fermentation. Chin J Appl Ecol 13:1452–1454

    CAS  Google Scholar 

  • Zhou J, Ma Q, Yi H, Wang LL, Song H, Yuan YJ (2011) Metabolome profiling reveals metabolic cooperation between Bacillus megaterium and Ketogulonicigenium vulgare during induced swarm motility. Appl Environ Microbiol 77:7023–7030

    Article  PubMed  CAS  Google Scholar 

  • Zhu YB, Liu J, Du GC, Zhou JW, Chen J (2012) Sporulation and spore stability of Bacillus megaterium enhance Ketogulonigenium vulgare propagation and 2-keto-L-gulonic acid ­biosynthesis. Bioresour Technol 107:399–404

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhou, J., Du, G., Chen, J. (2012). Metabolic Engineering of Microorganisms for Vitamin C Production. In: Wang, X., Chen, J., Quinn, P. (eds) Reprogramming Microbial Metabolic Pathways. Subcellular Biochemistry, vol 64. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5055-5_12

Download citation

Publish with us

Policies and ethics