Skip to main content

Part of the book series: Cancer Growth and Progression ((CAGP,volume 14))

  • 1268 Accesses

Abstract

The myelodysplastic syndromes (MDS) are clonal hematopoietic stem cell disorders typically characterized by peripheral cytopenia(s) despite marrow hypercellularity, with associated morphologic dysplasia in one or more myeloid lineages. In their initial phases they display ineffective hematopoiesis; later, maturation arrest develops, resulting in the progression to acute myeloid leukemia in a sizable minority of patients. While pediatric MDS is increasingly recognized, they are prototypically diseases of the elderly with a majority (∼85 %) of the affected over the age of 60 years and a median age at diagnosis of 76 years. Officially, the incidence is relatively low at 3.5 per 100,000 overall (Rollison et al. 2008); however, this is likely an underestimate, particularly since the incidence is gradually increasing with the average age of the United States population. Indeed, by the age of 70 it now approaches 75 per 100,000 (Cogle et al. 2011). Men are affected at a somewhat higher rate than women. There is no apparent geographical bias to the distribution of MDS; on an age-adjusted basis, the incidence is similar throughout the world, although it should be noted that these studies were performed primarily in Western nations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ades L et al (2009) Efficacy and safety of lenalidomide in intermediate-2 or high-risk myelodysplastic syndromes with 5q deletion: results of a phase 2 study. Blood 113:3947–3952

    Article  PubMed  CAS  Google Scholar 

  • Afable MG et al (2011) SNP array-based karyotyping: differences and similarities between aplastic anemia and hypocellular myelodysplastic syndromes. Blood 117:6876–6884

    Article  PubMed  CAS  Google Scholar 

  • Aggerholm A, Holm MS, Guldberg P, Olesen LH, Hokland P (2006) Promoter hypermethylation of p15INK4B, HIC1, CDH1, and ER is frequent in myelodysplastic syndrome and predicts poor prognosis in early-stage patients. Eur J Haematol 76:23–32

    Article  PubMed  CAS  Google Scholar 

  • Aizawa S et al (2000) Establishment of stromal cell line from an MDS RA patient which induced an apoptotic change in hematopoietic and leukemic cells in vitro. Exp Hematol 28:148–155

    Article  PubMed  CAS  Google Scholar 

  • Alexandrakis MG et al (2005) Serum evaluation of angiogenic cytokine basic fibroblast growth factor, hepatocyte growth factor and TNF-alpha in patients with myelodysplastic syndromes: correlation with bone marrow microvascular density. Int J Immunopathol Pharmacol 18:287–295

    PubMed  CAS  Google Scholar 

  • Arai Y et al (1997) The inv(11)(p15q22) chromosome translocation of de novo and therapy-related myeloid malignancies results in fusion of the nucleoporin gene, NUP98, with the putative RNA helicase gene, DDX10. Blood 89:3936–3944

    PubMed  CAS  Google Scholar 

  • Bacher U, Haferlach T, Kern W, Haferlach C, Schnittger S (2007) A comparative study of molecular mutations in 381 patients with myelodysplastic syndrome and in 4130 patients with acute myeloid leukemia. Haematologica 92:744–752

    Article  PubMed  CAS  Google Scholar 

  • Bains A, Luthra R, Medeiros LJ, Zuo Z (2011) FLT3 and NPM1 mutations in myelodysplastic syndromes: frequency and potential value for predicting progression to acute myeloid leukemia. Am J Clin Pathol 135:62–69

    Article  PubMed  Google Scholar 

  • Barlow JL et al (2010) A p53-dependent mechanism underlies macrocytic anemia in a mouse model of human 5q- syndrome. Nat Med 16:59–66

    Article  PubMed  CAS  Google Scholar 

  • Bejar R et al (2011) Clinical effect of point mutations in myelodysplastic syndromes. N Engl J Med 364:2496–2506

    Article  PubMed  CAS  Google Scholar 

  • Benesch M, Platzbecker U, Ward J, Deeg HJ, Leisenring W (2003) Expression of FLIP(Long) and FLIP(Short) in bone marrow mononuclear and CD34+ cells in patients with myelodysplastic syndrome: correlation with apoptosis. Leukemia 17:2460–2466

    Article  PubMed  CAS  Google Scholar 

  • Bernasconi P et al (2003) Is FISH a relevant prognostic tool in myelodysplastic syndromes with a normal chromosome pattern on conventional cytogenetics? A study on 57 patients. Leukemia 17:2107–2112

    Article  PubMed  CAS  Google Scholar 

  • Blau O et al (2007) Chromosomal aberrations in bone marrow mesenchymal stroma cells from patients with myelodysplastic syndrome and acute myeloblastic leukemia. Exp Hematol 35:221–229

    Article  PubMed  CAS  Google Scholar 

  • Bloomfield CD et al (2002) 11q23 balanced chromosome aberrations in treatment-related myelodysplastic syndromes and acute leukemia: report from an international workshop. Genes Chromosomes Cancer 33:362–378

    Article  PubMed  Google Scholar 

  • Blum W et al (2010) Clinical response and miR-29b predictive significance in older AML patients treated with a 10-day schedule of decitabine. Proc Natl Acad Sci U S A 107:7473–7478

    Article  PubMed  CAS  Google Scholar 

  • Bouchliou I et al (2011) Th17 and Foxp3(+) T regulatory cell dynamics and distribution in myelodysplastic syndromes. Clin Immunol 139:350–359

    Article  PubMed  CAS  Google Scholar 

  • Boudard D et al (2000) Expression and activity of caspases 1 and 3 in myelodysplastic syndromes. Leukemia 14:2045–2051

    Article  PubMed  CAS  Google Scholar 

  • Boultwood J et al (2007) Gene expression profiling of CD34+ cells in patients with the 5q- syndrome. Br J Haematol 139:578–589

    Article  PubMed  CAS  Google Scholar 

  • Boumber YA et al (2007) RIL, a LIM gene on 5q31, is silenced by methylation in cancer and sensitizes cancer cells to apoptosis. Cancer Res 67:1997–2005

    Article  PubMed  CAS  Google Scholar 

  • Bouscary D et al (1997) Fas/Apo-1 (CD95) expression and apoptosis in patients with myelodysplastic syndromes. Leukemia 11:839–845

    Article  PubMed  CAS  Google Scholar 

  • Bouscary D et al (2000) Activity of the caspase-3/CPP32 enzyme is increased in “early stage” myelodysplastic syndromes with excessive apoptosis, but caspase inhibition does not enhance colony formation in vitro. Exp Hematol 28:784–791

    Article  PubMed  CAS  Google Scholar 

  • Brakensiek K, Langer F, Schlegelberger B, Kreipe H, Lehmann U (2005) Hypermethylation of the suppressor of cytokine signalling-1 (SOCS-1) in myelodysplastic syndrome. Br J Haematol 130:209–217

    Article  PubMed  CAS  Google Scholar 

  • Brunner B et al (2002) Blood levels of angiogenin and vascular endothelial growth factor are elevated in myelodysplastic syndromes and in acute myeloid leukemia. J Hematother Stem Cell Res 11:119–125

    Article  PubMed  CAS  Google Scholar 

  • Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  PubMed  CAS  Google Scholar 

  • Chakraborty S et al (2009) Accelerated telomere shortening precedes development of therapy-related myelodysplasia or acute myelogenous leukemia after autologous transplantation for lymphoma. J Clin Oncol 27:791–798

    Article  PubMed  Google Scholar 

  • Chen CY et al (2007) RUNX1 gene mutation in primary myelodysplastic syndrome–the mutation can be detected early at diagnosis or acquired during disease progression and is associated with poor outcome. Br J Haematol 139:405–414

    Article  PubMed  CAS  Google Scholar 

  • Cho YS, Kim EJ, Park UH, Sin HS, Um SJ (2006) Additional sex comb-like 1 (ASXL1), in cooperation with SRC-1, acts as a ligand-dependent coactivator for retinoic acid receptor. J Biol Chem 281:17588–17598

    Article  PubMed  CAS  Google Scholar 

  • Choesmel V et al (2007) Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109:1275–1283

    Article  PubMed  CAS  Google Scholar 

  • Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2001) Mutations with loss of heterozygosity of p53 are common in therapy-related myelodysplasia and acute myeloid leukemia after exposure to alkylating agents and significantly associated with deletion or loss of 5q, a complex karyotype, and a poor prognosis. J Clin Oncol 19:1405–1413

    PubMed  CAS  Google Scholar 

  • Cioc AM, Wagner JE, MacMillan ML, DeFor T, Hirsch B (2010) Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol 133:92–100

    Article  PubMed  CAS  Google Scholar 

  • Ciovacco WA, Raskind WH, Kacena MA (2008) Human phenotypes associated with GATA-1 mutations. Gene 427:1–6

    Article  PubMed  CAS  Google Scholar 

  • Cogle CR, Craig BM, Rollison DE, List AF (2011) Incidence of the myelodysplastic syndromes using a novel claims-based algorithm: high number of uncaptured cases by cancer registries. Blood 117:7121–7125

    Article  PubMed  CAS  Google Scholar 

  • Coleman JF, Theil KS, Tubbs RR, Cook JR (2011) Diagnostic yield of bone marrow and peripheral blood FISH panel testing in clinically suspected myelodysplastic syndromes and/or acute myeloid leukemia: a prospective analysis of 433 cases. Am J Clin Pathol 135:915–920

    Article  PubMed  Google Scholar 

  • Davis RE, Greenberg PL (1998) Bcl-2 expression by myeloid precursors in myelodysplastic syndromes: relation to disease progression. Leuk Res 22:767–777

    Article  PubMed  CAS  Google Scholar 

  • Delhommeau F et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289–2301

    Article  PubMed  Google Scholar 

  • Dicker F et al (2010) Mutation analysis for RUNX1, MLL-PTD, FLT3-ITD, NPM1 and NRAS in 269 patients with MDS or secondary AML. Leukemia 24:1528–1532

    Article  PubMed  CAS  Google Scholar 

  • Dostalova Merkerova M et al (2011) Distinctive microRNA expression profiles in CD34+ bone marrow cells from patients with myelodysplastic syndrome. Eur J Hum Genet 19:313–319

    Article  PubMed  CAS  Google Scholar 

  • Dutt S et al (2011) Haploinsufficiency for ribosomal protein genes causes selective activation of p53 in human erythroid progenitor cells. Blood 117:2567–2576

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL et al (2008a) Identification of RPS14 as a 5q- syndrome gene by RNA interference screen. Nature 451:335–339

    Article  PubMed  CAS  Google Scholar 

  • Ebert BL et al (2008b) An erythroid differentiation signature predicts response to lenalidomide in myelodysplastic syndrome. PLoS Med 5:e35

    Article  PubMed  CAS  Google Scholar 

  • Epperson DE, Nakamura R, Saunthararajah Y, Melenhorst J, Barrett AJ (2001) Oligoclonal T cell expansion in myelodysplastic syndrome: evidence for an autoimmune process. Leuk Res 25:1075–1083

    Article  PubMed  CAS  Google Scholar 

  • Faderl S et al (2010) Oral clofarabine in the treatment of patients with higher-risk myelodysplastic syndrome. J Clin Oncol 28:2755–2760

    Article  PubMed  CAS  Google Scholar 

  • Feldman EJ et al (2008) On the use of lonafarnib in myelodysplastic syndrome and chronic myelomonocytic leukemia. Leukemia 22:1707–1711

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P et al (2007) A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate- to high-risk myelodysplastic syndrome. Blood 109:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Figueroa ME et al (2009) MDS and secondary AML display unique patterns and abundance of aberrant DNA methylation. Blood 114:3448–3458

    Article  PubMed  CAS  Google Scholar 

  • Finch AJ et al (2011) Uncoupling of GTP hydrolysis from eIF6 release on the ribosome causes Shwachman-Diamond syndrome. Genes Dev 25:917–929

    Article  PubMed  CAS  Google Scholar 

  • Flores-Figueroa E, Gutierrez-Espindola G, Montesinos JJ, Arana-Trejo RM, Mayani H (2002) In vitro characterization of hematopoietic microenvironment cells from patients with myelodysplastic syndrome. Leuk Res 26:677–686

    Article  PubMed  CAS  Google Scholar 

  • Follo MY et al (2009) Reduction of phosphoinositide-phospholipase C beta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci U S A 106:16811–16816

    Article  PubMed  Google Scholar 

  • Garcia JS, Jain N, Godley LA (2010) An update on the safety and efficacy of decitabine in the treatment of myelodysplastic syndromes. Onco Targets Ther 3:1–13

    PubMed  CAS  Google Scholar 

  • Garcia-Manero G et al (2008) Phase 1 study of the histone deacetylase inhibitor vorinostat (suberoylanilide hydroxamic acid [SAHA]) in patients with advanced leukemias and myelodysplastic syndromes. Blood 111:1060–1066

    Article  PubMed  CAS  Google Scholar 

  • Garzon R et al (2009) MicroRNA-29b induces global DNA hypomethylation and tumor suppressor gene reexpression in acute myeloid leukemia by targeting directly DNMT3A and 3B and indirectly DNMT1. Blood 113:6411–6418

    Article  PubMed  CAS  Google Scholar 

  • Gattermann N et al (2010) Deferasirox in iron-overloaded patients with transfusion-dependent myelodysplastic syndromes: results from the large 1-year EPIC study. Leuk Res 34:1143–1150

    Article  PubMed  CAS  Google Scholar 

  • Gelsi-Boyer V et al (2009) Mutations of polycomb-associated gene ASXL1 in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br J Haematol 145:788–800

    Article  PubMed  CAS  Google Scholar 

  • Gersuk GM, Lee JW, Beckham CA, Anderson J, Deeg HJ (1996) Fas (CD95) receptor and Fas-ligand expression in bone marrow cells from patients with myelodysplastic syndrome. Blood 88:1122–1123

    PubMed  CAS  Google Scholar 

  • Gersuk GM et al (1998) A role for tumour necrosis factor-alpha, Fas and Fas-Ligand in marrow failure associated with myelodysplastic syndrome. Br J Haematol 103:176–188

    Article  PubMed  CAS  Google Scholar 

  • Gibbons RJ et al (2003) Identification of acquired somatic mutations in the gene encoding chromatin-remodeling factor ATRX in the alpha-thalassemia myelodysplasia syndrome (ATMDS). Nat Genet 34:446–449

    Article  PubMed  CAS  Google Scholar 

  • Gore SD et al (2006) Combined DNA methyltransferase and histone deacetylase inhibition in the treatment of myeloid neoplasms. Cancer Res 66:6361–6369

    Article  PubMed  CAS  Google Scholar 

  • Graubert TA et al (2011) Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat Genet 44:53–57

    Google Scholar 

  • Greenberg PL (2011) Myelodysplastic syndromes: dissecting the heterogeneity. J Clin Oncol 29:1937–1938

    Article  PubMed  Google Scholar 

  • Greenberg P et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  • Greenberg PL et al (2009) Treatment of myelodysplastic syndrome patients with erythropoietin with or without granulocyte colony-stimulating factor: results of a prospective randomized phase 3 trial by the Eastern Cooperative Oncology Group (E1996). Blood 114:2393–2400

    Article  PubMed  CAS  Google Scholar 

  • Greenberg PL et al (2012) Revised International Prognostic Scoring System (IPSS-R) for myelodysplastic syndromes. Blood. doi: 10.1182/blood-2012-03-420489

    Google Scholar 

  • Grosjean-Raillard J et al (2009) ATM mediates constitutive NF-kappaB activation in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 28:1099–1109

    Article  PubMed  CAS  Google Scholar 

  • Gurevich I et al (2011) Refractory anemia with ring sideroblasts associated with marked thrombocytosis: a mixed group exhibiting a spectrum of morphologic findings. Am J Clin Pathol 135:398–403

    Article  PubMed  Google Scholar 

  • Gurion R et al (2010) 5-azacitidine prolongs overall survival in patients with myelodysplastic syndrome–a systematic review and meta-analysis. Haematologica 95:303–310

    Article  PubMed  CAS  Google Scholar 

  • Haase D et al (2007) New insights into the prognostic impact of the karyotype in MDS and correlation with subtypes: evidence from a core dataset of 2124 patients. Blood 110:4385–4395

    Article  PubMed  CAS  Google Scholar 

  • Harada Y, Harada H (2011) Molecular mechanisms that produce secondary MDS/AML by RUNX1/AML1 point mutations. J Cell Biochem 112:425–432

    Article  PubMed  CAS  Google Scholar 

  • Harada H et al (2004) High incidence of somatic mutations in the AML1/RUNX1 gene in myelodysplastic syndrome and low blast percentage myeloid leukemia with myelodysplasia. Blood 103:2316–2324

    Article  PubMed  CAS  Google Scholar 

  • Hashmi S et al (2011) Comparative analysis of Shwachman-Diamond syndrome to other inherited bone marrow failure syndromes and genotype-phenotype correlation. Clin Genet 79:448–458

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindberg E, Kanter-Lewensohn L, Ost A (1997a) Morphological changes and apoptosis in bone marrow from patients with myelodysplastic syndromes treated with granulocyte-CSF and erythropoietin. Leuk Res 21:415–425

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindberg E et al (1997b) Erythroid response to treatment with G-CSF plus erythropoietin for the anaemia of patients with myelodysplastic syndromes: proposal for a predictive model. Br J Haematol 99:344–351

    Article  PubMed  CAS  Google Scholar 

  • Hellstrom-Lindberg E et al (1998) Treatment of anemia in myelodysplastic syndromes with granulocyte colony-stimulating factor plus erythropoietin: results from a randomized phase II study and long-term follow-up of 71 patients. Blood 92:68–75

    PubMed  CAS  Google Scholar 

  • Hosoya N, Miyagawa K, Mitani K, Yazaki Y, Hirai H (1998) Mutation analysis of the WT1 gene in myelodysplastic syndromes. Jpn J Cancer Res 89:821–824

    Article  PubMed  CAS  Google Scholar 

  • http://www.qxmd.com/calculate-online/hematology/epo-gcsf-response-in-myelodysplastic-syndrome

  • Hu Q et al (2004) Soluble vascular endothelial growth factor receptor 1, and not receptor 2, is an independent prognostic factor in acute myeloid leukemia and myelodysplastic syndromes. Cancer 100:1884–1891

    Article  PubMed  CAS  Google Scholar 

  • Itzykson R et al (2011) Impact of TET2 mutations on response rate to azacitidine in myelodysplastic syndromes and low blast count acute myeloid leukemias. Leukemia 25:1147–1152

    Article  PubMed  CAS  Google Scholar 

  • Iwanaga M et al (2011) Risk of myelodysplastic syndromes in people exposed to ionizing radiation: a retrospective cohort study of Nagasaki atomic bomb survivors. J Clin Oncol 29:428–434

    Article  PubMed  Google Scholar 

  • Jadersten M et al (2008) Erythropoietin and granulocyte-colony stimulating factor treatment associated with improved survival in myelodysplastic syndrome. J Clin Oncol 26:3607–3613

    Article  PubMed  Google Scholar 

  • Jadersten M et al (2009) Clonal heterogeneity in the 5q- syndrome: p53 expressing progenitors prevail during lenalidomide treatment and expand at disease progression. Haematologica 94:1762–1766

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y et al (2009) Aberrant DNA methylation is a dominant mechanism in MDS progression to AML. Blood 113:1315–1325

    Article  PubMed  CAS  Google Scholar 

  • Joslin JM et al (2007) Haploinsufficiency of EGR1, a candidate gene in the del(5q), leads to the development of myeloid disorders. Blood 110:719–726

    Article  PubMed  CAS  Google Scholar 

  • Kaminskas E et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Kaneko H, Misawa S, Horiike S, Nakai H, Kashima K (1995) TP53 mutations emerge at early phase of myelodysplastic syndrome and are associated with complex chromosomal abnormalities. Blood 85:2189–2193

    PubMed  CAS  Google Scholar 

  • Kantarjian HM et al (2007a) Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience. Cancer 109:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian H et al (2007b) Results of a randomized study of 3 schedules of low-dose decitabine in higher-risk myelodysplastic syndrome and chronic myelomonocytic leukemia. Blood 109:52–57

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian H et al (2008) Decitabine improves patient outcomes in myelodysplastic syndromes: results of a phase III randomized study. Cancer 106:1794–1803

    Article  CAS  Google Scholar 

  • Kantarjian H et al (2010a) Safety and efficacy of romiplostim in patients with lower-risk myelodysplastic syndrome and thrombocytopenia. J Clin Oncol 28:437–444

    Article  PubMed  CAS  Google Scholar 

  • Kantarjian HM et al (2010b) Phase 2 study of romiplostim in patients with low- or intermediate-risk myelodysplastic syndrome receiving azacitidine therapy. Blood 116:3163–3170

    Article  PubMed  CAS  Google Scholar 

  • Keith T et al (2007) Regulation of angiogenesis in the bone marrow of myelodysplastic syndromes transforming to overt leukaemia. Br J Haematol 137:206–215

    Article  PubMed  CAS  Google Scholar 

  • Kelaidi C, Fenaux P (2010) Darbepoetin alfa in anemia of myelodysplastic syndromes: present and beyond. Expert Opin Biol Ther 10:605–614

    Article  PubMed  CAS  Google Scholar 

  • Kita-Sasai Y et al (2001) International prognostic scoring system and TP53 mutations are independent prognostic indicators for patients with myelodysplastic syndrome. Br J Haematol 115:309–312

    Article  PubMed  CAS  Google Scholar 

  • Kitagawa M et al (1997) Overexpression of tumor necrosis factor (TNF)-alpha and interferon (IFN)-gamma by bone marrow cells from patients with myelodysplastic syndromes. Leukemia 11:2049–2054

    Article  PubMed  CAS  Google Scholar 

  • Kordasti SY et al (2007) CD4+CD25high Foxp3+ regulatory T cells in myelodysplastic syndrome (MDS). Blood 110:847–850

    Article  PubMed  CAS  Google Scholar 

  • Korkolopoulou P et al (2001) Prognostic evaluation of the microvascular network in myelodysplastic syndromes. Leukemia 15:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Kosmider O et al (2009) TET2 mutation is an independent favorable prognostic factor in myelodysplastic syndromes (MDSs). Blood 114:3285–3291

    Article  PubMed  CAS  Google Scholar 

  • Kosmider O et al (2010) Mutations of IDH1 and IDH2 genes in early and accelerated phases of myelodysplastic syndromes and MDS/myeloproliferative neoplasms. Leukemia 24:1094–1096

    Article  PubMed  CAS  Google Scholar 

  • Kotsianidis I et al (2008) In vitro effects of the farnesyltransferase inhibitor tipifarnib on myelodysplastic syndrome progenitors. Acta Haematol 120:51–56

    Article  PubMed  CAS  Google Scholar 

  • Kuendgen A et al (2005) Results of a phase 2 study of valproic acid alone or in combination with all-trans retinoic acid in 75 patients with myelodysplastic syndrome and relapsed or refractory acute myeloid leukemia. Ann Hematol 84(Suppl 1):61–66

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, List AF, Hozo I, Komrokji R, Djulbegovic B (2010) Decitabine versus 5-azacitidine for the treatment of myelodysplastic syndrome: adjusted indirect meta-analysis. Haematologica 95:340–342, author reply 343–4

    Article  PubMed  Google Scholar 

  • Kupprion C, Motamed K, Sage EH (1998) SPARC (BM-40, osteonectin) inhibits the mitogenic effect of vascular endothelial growth factor on microvascular endothelial cells. J Biol Chem 273:29635–29640

    Article  PubMed  CAS  Google Scholar 

  • Kurzrock R et al (2004) Phase II study of R115777, a farnesyl transferase inhibitor, in myelodysplastic syndrome. J Clin Oncol 22:1287–1292

    Article  PubMed  CAS  Google Scholar 

  • Lane SW et al (2010) The Apc(min) mouse has altered hematopoietic stem cell function and provides a model for MPD/MDS. Blood 115:3489–3497

    Article  PubMed  CAS  Google Scholar 

  • Langemeijer SM et al (2009) Acquired mutations in TET2 are common in myelodysplastic syndromes. Nat Genet 41:838–842

    Article  PubMed  CAS  Google Scholar 

  • Lee SW et al (2010) ASXL1 represses retinoic acid receptor-mediated transcription through associating with HP1 and LSD1. J Biol Chem 285:18–29

    Article  PubMed  CAS  Google Scholar 

  • Lehmann S et al (2007) Common deleted genes in the 5q- syndrome: thrombocytopenia and reduced erythroid colony formation in SPARC null mice. Leukemia 21:1931–1936

    Article  PubMed  CAS  Google Scholar 

  • Leone G, Fianchi L, Pagano L, Voso MT (2010) Incidence and susceptibility to therapy-related myeloid neoplasms. Chem Biol Interact 184:39–45

    Article  PubMed  CAS  Google Scholar 

  • Lin J et al (2008) Methylation status of fragile histidine triad (FHIT) gene and its clinical impact on prognosis of patients with myelodysplastic syndrome. Leuk Res 32:1541–1545

    Article  PubMed  CAS  Google Scholar 

  • Lin J et al (2010) Aberrant methylation of DNA-damage-inducible transcript 3 promoter is a common event in patients with myelodysplastic syndrome. Leuk Res 34:991–994

    Article  PubMed  CAS  Google Scholar 

  • List A et al (2005) Efficacy of lenalidomide in myelodysplastic syndromes. N Engl J Med 352:549–557

    Article  PubMed  CAS  Google Scholar 

  • List A et al (2006) Lenalidomide in the myelodysplastic syndrome with chromosome 5q deletion. N Engl J Med 355:1456–1465

    Article  PubMed  CAS  Google Scholar 

  • Liu TX et al (2007) Chromosome 5q deletion and epigenetic suppression of the gene encoding alpha-catenin (CTNNA1) in myeloid cell transformation. Nat Med 13:78–83

    Article  PubMed  CAS  Google Scholar 

  • Loh ML et al (2005) Acquired PTPN11 mutations occur rarely in adult patients with myelodysplastic syndromes and chronic myelomonocytic leukemia. Leuk Res 29:459–462

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo F et al (2006) Mutational analysis of the KIT gene in myelodysplastic syndrome (MDS) and MDS-derived leukemia. Leuk Res 30:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Lu L et al (2009) The anti-cancer drug lenalidomide inhibits angiogenesis and metastasis via multiple inhibitory effects on endothelial cell function in normoxic and hypoxic conditions. Microvasc Res 77:78–86

    Article  PubMed  CAS  Google Scholar 

  • Lubbert M et al (2001) Cytogenetic responses in high-risk myelodysplastic syndrome following low-dose treatment with the DNA methylation inhibitor 5-aza-2′-deoxycytidine. Br J Haematol 114:349–357

    Article  PubMed  CAS  Google Scholar 

  • Lyons RM et al (2009) Hematologic response to three alternative dosing schedules of azacitidine in patients with myelodysplastic syndromes. J Clin Oncol 27:1850–1856

    Article  PubMed  CAS  Google Scholar 

  • Makishima H et al (2009) Mutations of e3 ubiquitin ligase cbl family members constitute a novel common pathogenic lesion in myeloid malignancies. J Clin Oncol 27:6109–6116

    Article  PubMed  CAS  Google Scholar 

  • Mallo M et al (2008) Fluorescence in situ hybridization improves the detection of 5q31 deletion in myelodysplastic syndromes without cytogenetic evidence of 5q. Haematologica 93:1001–1008

    Article  PubMed  Google Scholar 

  • Marcondes AM et al (2008) Dysregulation of IL-32 in myelodysplastic syndrome and chronic myelomonocytic leukemia modulates apoptosis and impairs NK function. Proc Natl Acad Sci U S A 105:2865–2870

    Article  PubMed  CAS  Google Scholar 

  • Marcondes AM, Ramakrishnan A, Deeg HJ (2009) Myeloid malignancies and the marrow microenvironment: some recent studies in patients with MDS. Curr Cancer Ther Rev 5:310–314

    Article  PubMed  CAS  Google Scholar 

  • Matsutani T et al (2003) Determination of T-cell receptors of clonal CD8-positive T-cells in myelodysplastic syndrome with erythroid hypoplasia. Leuk Res 27:305–312

    Article  PubMed  CAS  Google Scholar 

  • Melenhorst JJ et al (2002) Molecular and flow cytometric characterization of the CD4 and CD8 T-cell repertoire in patients with myelodysplastic syndrome. Br J Haematol 119:97–105

    Article  PubMed  CAS  Google Scholar 

  • Misawa S et al (1998) Significance of chromosomal alterations and mutations of the N-RAS and TP53 genes in relation to leukemogenesis of acute myeloid leukemia. Leuk Res 22:631–637

    Article  PubMed  CAS  Google Scholar 

  • Mohamedali A et al (2007) Prevalence and prognostic significance of allelic imbalance by single-nucleotide polymorphism analysis in low-risk myelodysplastic syndromes. Blood 110:3365–3373

    Article  PubMed  CAS  Google Scholar 

  • Molldrem JJ et al (2002) Antithymocyte globulin for treatment of the bone marrow failure associated with myelodysplastic syndromes. Ann Intern Med 137:156–163

    PubMed  Google Scholar 

  • Moreno-Aspitia A et al (2006) Thalidomide therapy in adult patients with myelodysplastic syndrome. A North Central Cancer Treatment Group phase II trial. Cancer 107:767–772

    Article  PubMed  CAS  Google Scholar 

  • Moyo V, Lefebvre P, Duh MS, Yektashenas B, Mundle S (2008) Erythropoiesis-stimulating agents in the treatment of anemia in myelodysplastic syndromes: a meta-analysis. Ann Hematol 87:527–536

    Article  PubMed  CAS  Google Scholar 

  • Muller-Thomas C, Schuster T, Peschel C, Gotze KS (2009) A limited number of 5-azacitidine cycles can be effective treatment in MDS. Ann Hematol 88:213–219

    Article  PubMed  CAS  Google Scholar 

  • Mundle SD et al (1999) Correlation of tumor necrosis factor alpha (TNF alpha) with high Caspase 3-like activity in myelodysplastic syndromes. Cancer Lett 140:201–207

    Article  PubMed  CAS  Google Scholar 

  • Musto P et al (2010) Response to recombinant erythropoietin alpha, without the adjunct of granulocyte-colony stimulating factor, is associated with a longer survival in patients with transfusion-dependent myelodysplastic syndromes. Leuk Res 34:981–985

    Article  PubMed  CAS  Google Scholar 

  • Navas T et al (2008) Inhibition of p38alpha MAPK disrupts the pathological loop of proinflammatory factor production in the myelodysplastic syndrome bone marrow microenvironment. Leuk Lymphoma 49:1963–1975

    Article  PubMed  CAS  Google Scholar 

  • Nikoloski G et al (2010) Somatic mutations of the histone methyltransferase gene EZH2 in myelodysplastic syndromes. Nat Genet 42:665–667

    Article  PubMed  CAS  Google Scholar 

  • Nikpour M et al (2010) Gene expression profiling of erythroblasts from refractory anaemia with ring sideroblasts (RARS) and effects of G-CSF. Br J Haematol 149:844–854

    Article  PubMed  CAS  Google Scholar 

  • Olney HJ, Le Beau MM (2007) Evaluation of recurring cytogenetic abnormalities in the treatment of myelodysplastic syndromes. Leuk Res 31:427–434

    Article  PubMed  CAS  Google Scholar 

  • Osato M (2004) Point mutations in the RUNX1/AML1 gene: another actor in RUNX leukemia. Oncogene 23:4284–4296

    Article  PubMed  CAS  Google Scholar 

  • Padua RA et al (1998) RAS, FMS and p53 mutations and poor clinical outcome in myelodysplasias: a 10-year follow-up. Leukemia 12:887–892

    Article  PubMed  CAS  Google Scholar 

  • Papaemmanuil E et al (2011) Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N Engl J Med 365:1384–1395

    Google Scholar 

  • Park S et al (2008) Predictive factors of response and survival in myelodysplastic syndrome treated with erythropoietin and G-CSF: the GFM experience. Blood 111:574–582

    Article  PubMed  CAS  Google Scholar 

  • Parker JE et al (1998) ‘Low-risk’ myelodysplastic syndrome is associated with excessive apoptosis and an increased ratio of pro- versus anti-apoptotic bcl-2-related proteins. Br J Haematol 103:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Parker JE et al (2000) The role of apoptosis, proliferation, and the Bcl-2-related proteins in the myelodysplastic syndromes and acute myeloid leukemia secondary to MDS. Blood 96:3932–3938

    PubMed  CAS  Google Scholar 

  • Passweg JR et al (2011) Immunosuppressive therapy for patients with myelodysplastic syndrome: a prospective randomized multicenter phase III trial comparing antithymocyte globulin plus cyclosporine with best supportive care--SAKK 33/9. J Clin Oncol 29:303–309

    Article  PubMed  CAS  Google Scholar 

  • Pedersen B (1996) Anatomy of the 5q- deletion: different sex ratios and deleted 5q bands in MDS and AML. Leukemia 10:1883–1890

    PubMed  CAS  Google Scholar 

  • Pedersen-Bjergaard J, Philip P (1991) Two different classes of therapy-related and de-novo acute myeloid leukemia? Cancer Genet Cytogenet 55:119–124

    Article  PubMed  CAS  Google Scholar 

  • Pedersen-Bjergaard J, Christiansen DH, Desta F, Andersen MK (2006) Alternative genetic pathways and cooperating genetic abnormalities in the pathogenesis of therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 20:1943–1949

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A et al (2007) Lenalidomide inhibits the malignant clone and up-regulates the SPARC gene mapping to the commonly deleted region in 5q- syndrome patients. Proc Natl Acad Sci U S A 104:11406–11411

    Article  PubMed  CAS  Google Scholar 

  • Pellagatti A et al (2008) Haploinsufficiency of RPS14 in 5q- syndrome is associated with deregulation of ribosomal- and translation-related genes. Br J Haematol 142:57–64

    Article  PubMed  CAS  Google Scholar 

  • Perez B et al (2010) Germline mutations of the CBL gene define a new genetic syndrome with predisposition to juvenile myelomonocytic leukaemia. J Med Genet 47:686–691

    Article  PubMed  CAS  Google Scholar 

  • Pilatrino C et al (2005) Increase in platelet count in older, poor-risk patients with acute myeloid leukemia or myelodysplastic syndrome treated with valproic acid and all-trans retinoic acid. Cancer 104:101–109

    Article  PubMed  CAS  Google Scholar 

  • Pitchford CW, Hettinga AC, Reichard KK (2010) Fluorescence in situ hybridization testing for −5/5q, -7/7q, +8, and del(20q) in primary myelodysplastic syndrome correlates with conventional cytogenetics in the setting of an adequate study. Am J Clin Pathol 133:260–264

    Article  PubMed  Google Scholar 

  • Plasilova M et al (2002) TRAIL (Apo2L) suppresses growth of primary human leukemia and myelodysplasia progenitors. Leukemia 16:67–73

    Article  PubMed  CAS  Google Scholar 

  • Potapova A et al (2010) Epigenetic inactivation of tumour suppressor gene KLF11 in myelodysplastic syndromes*. Eur J Haematol 84:298–303

    Article  PubMed  CAS  Google Scholar 

  • Qian J et al (2010) Methylation of DAPK1 promoter: frequent but not an adverse prognostic factor in myelodysplastic syndrome. Int J Lab Hematol 32:74–81

    Article  PubMed  CAS  Google Scholar 

  • Quddus F et al (2010) Oral Ezatiostat HCl (TLK199) and Myelodysplastic syndrome: a case report of sustained hematologic response following an abbreviated exposure. J Hematol Oncol 3:16

    Article  PubMed  CAS  Google Scholar 

  • Ravoet C et al (2008) Farnesyl transferase inhibitor (lonafarnib) in patients with myelodysplastic syndrome or secondary acute myeloid leukaemia: a phase II study. Ann Hematol 87:881–885

    Article  PubMed  CAS  Google Scholar 

  • Raza A et al (1995a) Apoptosis in bone marrow biopsy samples involving stromal and hematopoietic cells in 50 patients with myelodysplastic syndromes. Blood 86:268–276

    PubMed  CAS  Google Scholar 

  • Raza A et al (1995b) Simultaneous assessment of cell kinetics and programmed cell death in bone marrow biopsies of myelodysplastics reveals extensive apoptosis as the probable basis for ineffective hematopoiesis. Am J Hematol 48:143–154

    Article  PubMed  CAS  Google Scholar 

  • Raza A et al (1996) Novel insights into the biology of myelodysplastic syndromes: excessive apoptosis and the role of cytokines. Int J Hematol 63:265–278

    Article  PubMed  CAS  Google Scholar 

  • Raza A et al (2008) Phase 2 study of lenalidomide in transfusion-dependent, low-risk, and intermediate-1 risk myelodysplastic syndromes with karyotypes other than deletion 5q. Blood 111:86–93

    Article  PubMed  CAS  Google Scholar 

  • Raza A et al (2009a) Phase 1-2a multicenter dose-escalation study of ezatiostat hydrochloride liposomes for injection (Telintra, TLK199), a novel glutathione analog prodrug in patients with myelodysplastic syndrome. J Hematol Oncol 2:20

    Article  PubMed  CAS  Google Scholar 

  • Raza A et al (2009b) Phase 1 multicenter dose-escalation study of ezatiostat hydrochloride (TLK199 tablets), a novel glutathione analog prodrug, in patients with myelodysplastic syndrome. Blood 113:6533–6540

    Article  PubMed  CAS  Google Scholar 

  • Rizzo JD et al (2010) American Society of Clinical Oncology/American Society of Hematology clinical practice guideline update on the use of epoetin and darbepoetin in adult patients with cancer. J Clin Oncol 28:4996–5010

    Article  PubMed  Google Scholar 

  • Rollison DE et al (2008) Epidemiology of myelodysplastic syndromes and chronic myeloproliferative disorders in the United States, 2001–2004, using data from the NAACCR and SEER programs. Blood 112:45–52

    Article  PubMed  CAS  Google Scholar 

  • Romeo M, Chauffaille Mde L, Silva MR, Bahia DM, Kerbauy J (2002) Comparison of cytogenetics with FISH in 40 myelodysplastic syndrome patients. Leuk Res 26:993–996

    Article  PubMed  CAS  Google Scholar 

  • Sanz C, Richard C, Prosper F, Fernandez-Luna JL (2002) Nuclear factor k B is activated in myelodysplastic bone marrow cells. Haematologica 87:1005–1006

    PubMed  CAS  Google Scholar 

  • Saunthararajah Y et al (2002) HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 100:1570–1574

    PubMed  CAS  Google Scholar 

  • Schanz J et al (2011) Coalesced multicentric analysis of 2,351 patients with myelodysplastic syndromes indicates an underestimation of poor-risk cytogenetics of myelodysplastic syndromes in the international prognostic scoring system. J Clin Oncol 29:1963–1970

    Article  PubMed  Google Scholar 

  • Seal S et al (2008) Differential responses of FLIPLong and FLIPShort-overexpressing human myeloid leukemia cells to TNF-alpha and TRAIL-initiated apoptotic signals. Exp Hematol 36:1660–1672

    Article  PubMed  CAS  Google Scholar 

  • Sekeres MA et al (2011) Subcutaneous or intravenous administration of romiplostim in thrombocytopenic patients with lower risk myelodysplastic syndromes. Cancer 117:992–1000

    Article  PubMed  CAS  Google Scholar 

  • Shen L et al (2010) DNA methylation predicts survival and response to therapy in patients with myelodysplastic syndromes. J Clin Oncol 28:605–613

    Article  PubMed  CAS  Google Scholar 

  • Shih LY et al (2005) Heterogeneous patterns of CEBPalpha mutation status in the progression of myelodysplastic syndrome and chronic myelomonocytic leukemia to acute myelogenous leukemia. Clin Cancer Res 11:1821–1826

    Article  PubMed  CAS  Google Scholar 

  • Silverman LR et al (2002) Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B. J Clin Oncol 20:2429–2440

    Article  PubMed  CAS  Google Scholar 

  • Silverman LR et al (2006) Further analysis of trials with azacitidine in patients with myelodysplastic syndrome: studies 8421, 8921, and 9221 by the Cancer and Leukemia Group B. J Clin Oncol 24:3895–3903

    Article  PubMed  CAS  Google Scholar 

  • Sloand EM et al (2005) Preferential suppression of trisomy 8 compared with normal hematopoietic cell growth by autologous lymphocytes in patients with trisomy 8 myelodysplastic syndrome. Blood 106:841–851

    Article  PubMed  CAS  Google Scholar 

  • Sloand EM, Wu CO, Greenberg P, Young N, Barrett J (2008) Factors affecting response and survival in patients with myelodysplasia treated with immunosuppressive therapy. J Clin Oncol 26:2505–2511

    Article  PubMed  Google Scholar 

  • Slovak ML et al (2002) 21q22 balanced chromosome aberrations in therapy-related hematopoietic disorders: report from an international workshop. Genes Chromosomes Cancer 33:379–394

    Article  PubMed  Google Scholar 

  • Smith AE et al (2010) Next-generation sequencing of the TET2 gene in 355 MDS and CMML patients reveals low-abundance mutant clones with early origins, but indicates no definite prognostic value. Blood 116:3923–3932

    Article  PubMed  CAS  Google Scholar 

  • Sokol L et al (2011) Identification of a risk dependent microRNA expression signature in myelodysplastic syndromes. Br J Haematol 153:24–32

    Article  PubMed  CAS  Google Scholar 

  • Song WJ et al (1999) Haploinsufficiency of CBFA2 causes familial thrombocytopenia with propensity to develop acute myelogenous leukaemia. Nat Genet 23:166–175

    Article  PubMed  CAS  Google Scholar 

  • Sportoletti P et al (2008) Npm1 is a haploinsufficient suppressor of myeloid and lymphoid malignancies in the mouse. Blood 111:3859–3862

    Article  PubMed  CAS  Google Scholar 

  • Starczynowski DT et al (2008) High-resolution whole genome tiling path array CGH analysis of CD34+ cells from patients with low-risk myelodysplastic syndromes reveals cryptic copy number alterations and predicts overall and leukemia-free survival. Blood 112:3412–3424

    Article  PubMed  CAS  Google Scholar 

  • Steensma DP (2010) Novel therapies for myelodysplastic syndromes. Hematol Oncol Clin North Am 24:423–441

    Article  PubMed  Google Scholar 

  • Stifter G, Heiss S, Gastl G, Tzankov A, Stauder R (2005) Over-expression of tumor necrosis factor-alpha in bone marrow biopsies from patients with myelodysplastic syndromes: relationship to anemia and prognosis. Eur J Haematol 75:485–491

    Article  PubMed  CAS  Google Scholar 

  • Stirewalt DL et al (2008) Tumour necrosis factor-induced gene expression in human marrow stroma: clues to the pathophysiology of MDS? Br J Haematol 140:444–453

    Article  PubMed  CAS  Google Scholar 

  • Swerdlow SH, International Agency for Research on Cancer, World Health Organization, Louis A. Duhring Fund (2008) WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Tai IT, Tang MJ (2008) SPARC in cancer biology: its role in cancer progression and potential for therapy. Drug Resist Updat 11:231–246

    Article  PubMed  CAS  Google Scholar 

  • Tehranchi R et al (2003) Granulocyte colony-stimulating factor inhibits spontaneous cytochrome c release and mitochondria-dependent apoptosis of myelodysplastic syndrome hematopoietic progenitors. Blood 101:1080–1086

    Article  PubMed  CAS  Google Scholar 

  • Thiel A et al (2011) Comprehensive array CGH of normal karyotype myelodysplastic syndromes reveals hidden recurrent and individual genomic copy number alterations with prognostic relevance. Leukemia 25:387–399

    Article  PubMed  CAS  Google Scholar 

  • Thol F et al (2010) IDH1 mutations in patients with myelodysplastic syndromes are associated with an unfavorable prognosis. Haematologica 95:1668–1674

    Article  PubMed  CAS  Google Scholar 

  • Thol F et al (2011) Prognostic significance of ASXL1 mutations in patients with myelodysplastic syndromes. J Clin Oncol 29:2499–2506

    Article  PubMed  CAS  Google Scholar 

  • Thol F et al (2012) Frequency and prognostic impact of mutations in SRSF2, U2AF1, and ZRSR2 in patients with myelodysplastic syndromes. Blood 119:3578–3584

    Google Scholar 

  • Tiu RV et al (2011) Prognostic impact of SNP array karyotyping in myelodysplastic syndromes and related myeloid malignancies. Blood 117:4552–4560

    Article  PubMed  CAS  Google Scholar 

  • van de Loosdrecht AA et al (2001) Mitochondrial disruption and limited apoptosis of erythroblasts are associated with high risk myelodysplasia. An ultrastructural analysis. Leuk Res 25:385–393

    Article  PubMed  Google Scholar 

  • Voso MT et al (2009) Valproic acid at therapeutic plasma levels may increase 5-azacytidine efficacy in higher risk myelodysplastic syndromes. Clin Cancer Res 15:5002–5007

    Article  PubMed  CAS  Google Scholar 

  • Voulgarelis M, Giannouli S, Ritis K, Tzioufas AG (2004) Myelodysplasia-associated autoimmunity: clinical and pathophysiologic concepts. Eur J Clin Invest 34:690–700

    Article  PubMed  CAS  Google Scholar 

  • Walkley CR et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Fernald AA, Anastasi J, Le Beau MM, Qian Z (2010) Haploinsufficiency of Apc leads to ineffective hematopoiesis. Blood 115:3481–3488

    Article  PubMed  CAS  Google Scholar 

  • Watanabe-Okochi N et al (2008) AML1 mutations induced MDS and MDS/AML in a mouse BMT model. Blood 111:4297–4308

    Article  PubMed  CAS  Google Scholar 

  • Wei S et al (2009) A critical role for phosphatase haplodeficiency in the selective suppression of deletion 5q MDS by lenalidomide. Proc Natl Acad Sci U S A 106:12974–12979

    Article  PubMed  CAS  Google Scholar 

  • Wu SJ et al (2006) Clinical implications of SOCS1 methylation in myelodysplastic syndrome. Br J Haematol 135:317–323

    Article  PubMed  CAS  Google Scholar 

  • Wulfert M et al (2008) Analysis of mitochondrial DNA in 104 patients with myelodysplastic syndromes. Exp Hematol 36:577–586

    Article  PubMed  CAS  Google Scholar 

  • Xu F et al (2011) Overexpression of the EZH2, RING1 and BMI1 genes is common in myelodysplastic syndromes: relation to adverse epigenetic alteration and poor prognostic scoring. Ann Hematol 90:643–653

    Article  PubMed  CAS  Google Scholar 

  • Yang W et al (2010) FISH analysis in addition to G-band karyotyping: utility in evaluation of myelodysplastic syndromes? Leuk Res 34:420–425

    Article  PubMed  CAS  Google Scholar 

  • Yang H et al (2011) Levels of miR-29b do not predict for response in patients with acute myelogenous leukemia treated with the combination of 5-azacytidine, valproic acid, and ATRA. Am J Hematol 86:237–238

    Article  PubMed  Google Scholar 

  • Ye Y et al (2009) Progressive chromatin repression and promoter methylation of CTNNA1 associated with advanced myeloid malignancies. Cancer Res 69:8482–8490

    Article  PubMed  CAS  Google Scholar 

  • Yoshida K et al (2011) Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478:64–69

    Google Scholar 

  • Zang DY, Goodwin RG, Loken MR, Bryant E, Deeg HJ (2001) Expression of tumor necrosis factor-related apoptosis-inducing ligand, Apo2L, and its receptors in myelodysplastic syndrome: effects on in vitro hemopoiesis. Blood 98:3058–3065

    Article  PubMed  CAS  Google Scholar 

  • Zhou L et al (2008) Inhibition of the TGF-beta receptor I kinase promotes hematopoiesis in MDS. Blood 112:3434–3443

    Article  PubMed  CAS  Google Scholar 

  • Zuo Z et al (2011) Circulating microRNAs let-7a and miR-16 predict progression-free survival and overall survival in patients with myelodysplastic syndrome. Blood 118:413–415

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Bagg M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nybakken, G.E., Bagg, A. (2012). Myelodysplastic Syndromes. In: Tao, J., Sotomayor, E. (eds) Hematologic Cancers: From Molecular Pathobiology to Targeted Therapeutics. Cancer Growth and Progression, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5028-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5028-9_11

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5027-2

  • Online ISBN: 978-94-007-5028-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics