Skip to main content

PIKfyve and its Lipid Products in Health and in Sickness

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

PIKfyve, a phosphoinositide 5-kinase synthesizing PtdIns(3,5)P2 and PtdIns5P in a cellular context, belongs to an evolutionarily ancient gene family of PtdIns(3,5)P2-synthesizing enzymes that, except for plants, are products of a single-copy gene across species. In the dozen years after its discovery, enormous progress has been made in characterizing the numerous PIKfyve cellular functions and the regulatory mechanisms that govern these functions. It became clear that PIKfyve does not act alone but, rather, it engages the scaffolding regulator ArPIKfyve and the phosphatase Sac3 to make a multiprotein “PAS” complex, so called for the first letters of the protein names. This complex relays antagonistic signals, one for synthesis, another for turnover of PtdIns(3,5)P2, whose dysregulated coordination is linked to several human diseases. The physiological significance for each protein in the PAS complex is underscored by the early lethality of the mouse models with disruption in any of the three genes. This chapter summarizes our current knowledge of the diverse and complex functionality of PIKfyve and PtdIns(3,5)P2/PtdIns5P products with particular highlights on recent discoveries of inherited or somatic mutations in PIKfyve and Sac3 linked to human disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alesutan IS, Ureche ON, Laufer J, Klaus F, Zurn A, Lindner R, Strutz-Seebohm N, Tavare JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2010) Regulation of the glutamate transporter EAAT4 by PIKfyve. Cell Physiol Biochem 25:187–194

    PubMed  CAS  Google Scholar 

  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768

    PubMed  CAS  Google Scholar 

  • Andrade MA, Petosa C, O’Donoghue SI, Muller CW, Bork P (2001) Comparison of ARM and HEAT protein repeats. J Mol Biol 309:1–18

    PubMed  CAS  Google Scholar 

  • Backer JM (2008) The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    PubMed  CAS  Google Scholar 

  • Backer JM (2010) New methods for capturing the mystery lipid, PtdIns5P. Biochem J 428:1–2

    Google Scholar 

  • Balla T (2006) Phosphoinositide-derived messengers in endocrine signaling. J Endocrinol 188:135–153

    PubMed  CAS  Google Scholar 

  • Banfic H, Downes CP, Rittenhouse SE (1998) Biphasic activation of PKBalpha/Akt in platelets. Evidence for stimulation both by phosphatidylinositol 3,4-bisphosphate, produced via a novel pathway, and by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:11630–11637

    PubMed  CAS  Google Scholar 

  • Berger P, Bonneick S, Willi S, Wymann M, Suter U (2002) Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet 11:1569–1579

    PubMed  CAS  Google Scholar 

  • Berwick DC, Dell GC, Welsh GI, Heesom KJ, Hers I, Fletcher LM, Cooke FT, Tavare JM (2004) Protein kinase B phosphorylation of PIKfyve regulates the trafficking of GLUT4 vesicles. J Cell Sci 117:5985–5993

    PubMed  CAS  Google Scholar 

  • Blagoveshchenskaya A, Mayinger P (2009) SAC1 lipid phosphatase and growth control of the secretory pathway. Mol BioSyst 5:36–42

    PubMed  CAS  Google Scholar 

  • Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali SC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

    PubMed  CAS  Google Scholar 

  • Bonifacino JS, Rojas R (2006) Retrograde transport from endosomes to the trans-Golgi network. Nat Rev Mol Cell Biol 7:568–579

    PubMed  CAS  Google Scholar 

  • Cabezas A, Pattni K, Stenmark H (2006) Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene 371:34–41

    PubMed  CAS  Google Scholar 

  • Carlton JG, Cullen PJ (2005) Coincidence detection in phosphoinositide signaling. Trends Cell Biol 15:540–547

    PubMed  CAS  Google Scholar 

  • Carpenter G, Liao HJ (2009) Trafficking of receptor tyrosine kinases to the nucleus. Exp Cell Res 315:1556–1566

    PubMed  CAS  Google Scholar 

  • Casamayor A, Snyder M (2003) Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol Cell Biol 23:2762–2777

    PubMed  CAS  Google Scholar 

  • Chen Y, Klionsky DJ (2011) The regulation of autophagy—unanswered questions. J Cell Sci 124:161–170

    PubMed  CAS  Google Scholar 

  • Chia PZ, Gasnereau I, Lieu ZZ, Gleeson PA (2011) Rab9-dependent retrograde transport and endosomal sorting of the endopeptidase furin. J Cell Sci 124:2401–2413

    PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of Fig. 4 causes neurodegeneration in the pale tremor mouse and patients with CMT4 J. Nature 448:68–72

    PubMed  CAS  Google Scholar 

  • Chow CY, Landers JE, Bergren SK, Sapp PC, Grant AE, Jones JM, Everett L, Lenk GM, McKenna-Yasek DM, Weisman LS, Figlewicz D, Brown RH, Meisler MH (2009) Deleterious variants of Fig. 4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    PubMed  CAS  Google Scholar 

  • Clarke JH, Letcher AJ, D’Santos CS, Halstead JR, Irvine RF, Divecha N (2001) Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem J 357:905–910

    PubMed  CAS  Google Scholar 

  • Copp AJ (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11:87–93

    PubMed  CAS  Google Scholar 

  • Coronas S, Lagarrigue F, Ramel D, Chicanne G, Delsol G, Payrastre B, Tronchere H (2008) Elevated levels of PtdIns5P in NPM-ALK transformed cells: implication of PIKfyve. Biochem Biophys Res Commun 372:351–355

    PubMed  CAS  Google Scholar 

  • D’Andrea LD, Regan L (2003) TPR proteins: the versatile helix. Trends Biochem Sci 28:655–662

    PubMed  Google Scholar 

  • de Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10:883–893

    PubMed  Google Scholar 

  • Dhanasekaran DN, Kashef K, Lee CM, Xu H, Reddy EP (2007) Scaffold proteins of MAP-kinase modules. Oncogene 26:3185–3202

    PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    PubMed  Google Scholar 

  • Diaz E, Schimmoller F, Pfeffer SR (1997) A novel Rab9 effector required for endosome-to-TGN transport. J Cell Biol 138:283–290

    PubMed  CAS  Google Scholar 

  • Dominguez V, Raimondi C, Somanath S, Bugliani M, Loder MK, Edling CE, Divecha N, da Silva-Xavier G, Marselli L, Persaud SJ, Turner MD, Rutter GA, Marchetti P, Falasca M, Maffucci T (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225

    PubMed  CAS  Google Scholar 

  • Dong XP, Shen D, Wang X, Dawson T, Li X, Zhang Q, Cheng X, Zhang Y, Weisman LS, Delling M, Xu H (2010) PI(3,5)P(2) controls membrane trafficking by direct activation of mucolipin Ca(2+) release channels in the endolysosome. Nat Commun 1:38

    PubMed  Google Scholar 

  • Dove SK, Cooke FT, Douglas MR, Sayers LG, Parker PJ, Michell RH (1997) Osmotic stress activates phosphatidylinositol-3,5-bisphosphate synthesis. Nature 390:187–192

    PubMed  CAS  Google Scholar 

  • Dove SK, Dong K, Kobayashi T, Williams FK, Michell RH (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13

    PubMed  CAS  Google Scholar 

  • Dupuis-Coronas S, Lagarrigue F, Ramel D, Chicanne G, Saland E, Gaits-Iacovoni F, Payrastre B, Tronchere H (2011) The nucleophosmin-anaplastic lymphoma kinase oncogene interacts, activates, and uses the kinase PIKfyve to increase invasiveness. J Biol Chem 286:32105–32114

    PubMed  CAS  Google Scholar 

  • Falasca M, Maffucci T (2009) Rethinking phosphatidylinositol 3-monophosphate. Biochim Biophys Acta 1793:1795–1803

    PubMed  CAS  Google Scholar 

  • Falasca M, Hughes WE, Dominguez V, Sala G, Fostira F, Fang MQ, Cazzolli R, Shepherd PR, James DE, Maffucci T (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. J Biol Chem 282:28226–28236

    PubMed  CAS  Google Scholar 

  • Falguieres T, Luyet PP, Gruenberg J (2009) Molecular assemblies and membrane domains in multivesicular endosome dynamics. Exp Cell Res 315:1567–1573

    PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878

    PubMed  CAS  Google Scholar 

  • Foley K, Boguslavsky S, Klip A (2011) Endocytosis, recycling, and regulated exocytosis of glucose transporter 4. Biochemistry 50:3048–3061

    PubMed  CAS  Google Scholar 

  • Gary JD, Wurmser AE, Bonangelino CJ, Weisman LS, Emr SD (1998) Fab1p is essential for PtdIns(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 143:65–79

    PubMed  CAS  Google Scholar 

  • Gehring EM, Lam RS, Siraskar G, Koutsouki E, Seebohm G, Ureche ON, Ureche L, Baltaev R, Tavare JM, Lang F (2009a) PIKfyve upregulates CFTR activity. Biochem Biophys Res Commun 390:952–957

    PubMed  CAS  Google Scholar 

  • Gehring EM, Zurn A, Klaus F, Laufer J, Sopjani M, Lindner R, Strutz-Seebohm N, Tavare JM, Boehmer C, Palmada M, Lang UE, Seebohm G, Lang F (2009b) Regulation of the glutamate transporter EAAT2 by PIKfyve. Cell Physiol Biochem 24:361–368

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    PubMed  CAS  Google Scholar 

  • Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B, Chen J, Rao VR, Brugge JS, Ferguson CG, Payrastre B, Myszka DG, Cantley LC, Wagner G, Divecha N, Prestwich GD, Yuan J (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    PubMed  CAS  Google Scholar 

  • Gruenberg J, Stenmark H (2004) The biogenesis of multivesicular endosomes. Nat Rev Mol Cell Biol 5:317–323

    PubMed  CAS  Google Scholar 

  • Han BK, Emr SD (2011) Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1. Genes Dev 25:984–995

    PubMed  CAS  Google Scholar 

  • Herman GA, Bonzelius F, Cieutat AM, Kelly RB (1994) A distinct class of intracellular storage vesicles, identified by expression of the glucose transporter GLUT4. Proc Natl Acad Sci U S A 91:12750–12754

    PubMed  CAS  Google Scholar 

  • Hill EV, Hudson CA, Vertommen D, Rider MH, Tavare JM (2010) Regulation of PIKfyve phosphorylation by insulin and osmotic stress. Biochem Biophys Res Commun 397:650–655

    PubMed  CAS  Google Scholar 

  • Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J (2011) Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 121:70–85

    PubMed  CAS  Google Scholar 

  • Huang S, Czech MP (2007) The GLUT4 glucose transporter. Cell Metab 5:237–252

    PubMed  CAS  Google Scholar 

  • Hudson AM, Cooley L (2008) Phylogenetic, structural and functional relationships between WD- and Kelch-repeat proteins. Subcell Biochem 48:6–19

    PubMed  Google Scholar 

  • Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350(Pt 2):337–352

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2001) Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 276:26141–26147

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K, Kanzaki M, Pessin J, Shisheva A (2002a) Functional dissection of lipid and protein kinase signals of PIKfyve reveals the role of PtdIns 3,5–P2 production for endomembrane integrity. J Biol Chem 277:9206–9211

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K, Shisheva A (2002b) Requirement for PIKfyve enzymatic activity in acute and long-term insulin cellular effects. Endocrinology 143:4742–4754

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Foti M, Carpentier JL, Shisheva A (2003a) PIKfyve controls fluid phase endocytosis but not recycling/degradation of endocytosed receptors or sorting of procathepsin D by regulating multivesicular body morphogenesis. Mol Biol Cell 14:4581–4591

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K, Deeb R, Fligger J, Soans A, Finley RL Jr, Shisheva A (2003b) Active PIKfyve associates with and promotes the membrane attachment of the late endosome-to-trans-Golgi network transport factor Rab9 effector p40. J Biol Chem 278:50863–50871

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5–P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291:393–404

    Google Scholar 

  • Ikonomov OC, Sbrissa D, Dondapati R, Shisheva A (2007) ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes. Exp Cell Res 313:2404–2416

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Fligger J, Sbrissa D, Dondapati R, Mlak K, Deeb R, Shisheva A (2009a) Kinesin adapter JLP links PIKfyve to microtubule-based endosome-to-trans-Golgi network traffic of furin. J Biol Chem 284:3750–3761

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Fenner H, Shisheva A (2009b) PIKfyve-ArPIKfyve-Sac3 core complex: contact sites and their consequence for Sac3 phosphatase activity and endocytic membrane homeostasis. J Biol Chem 284:35794–35806

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A (2009c) Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase: gain in insulin responsiveness through Sac3 down-regulation in adipocytes. J Biol Chem 284:23961–23971

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2009d) YM201636, an inhibitor of retroviral budding and PIKfyve-catalyzed PtdIns(3,5)P2 synthesis, halts glucose entry by insulin in adipocytes. Biochem Biophys Res Commun 382:566–570

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010) ArPIKfyve regulates Sac3 protein abundance and turnover: disruption of the mechanism by Sac3I41T mutation causing Charcot-Marie-Tooth 4 J disorder. J Biol Chem 285:26760–26764

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Delvecchio K, Xie Y, Jin JP, Rappolee D, Shisheva A (2011) The Phosphoinositide Kinase PIKfyve Is Vital in Early Embryonic Development: PREIMPLANTATION LETHALITY OF PIKfyve-/- EMBRYOS BUT NORMALITY OF PIKfyve ± MICE. J Biol Chem 286:13404–13413

    PubMed  CAS  Google Scholar 

  • Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA (2005) The type Ialpha inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16:2218–2233

    PubMed  CAS  Google Scholar 

  • Jefferies HB, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD, Parker PJ (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9:164–170

    PubMed  CAS  Google Scholar 

  • Johannes L, Popoff V (2008) Tracing the retrograde route in protein trafficking. Cell 135:1175–1187

    PubMed  CAS  Google Scholar 

  • Johnson EE, Overmeyer JH, Gunning WT, Maltese WA (2006) Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosomes. J Cell Sci 119:1219–1232

    PubMed  CAS  Google Scholar 

  • Jones DR, Gonzalez-Garcia A, Diez E, Martinez AC, Carrera AC, Merida I (1999) The identification of phosphatidylinositol 3,5-bisphosphate in T-lymphocytes and its regulation by interleukin-2. J Biol Chem 274:18407–18413

    PubMed  CAS  Google Scholar 

  • Jones DR, Bultsma Y, Keune WJ, Halstead JR, Elouarrat D, Mohammed S, Heck AJ, D’Santos CS, Divecha N (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695

    PubMed  CAS  Google Scholar 

  • Katona I, Zhang X, Bai Y, Shy ME, Guo J, Yan Q, Hatfield J, Kupsky WJ, Li J (2011) Distinct pathogenic processes between Fig. 4-deficient motor and sensory neurons. Eur J Neurosci 33:1401–1410

    PubMed  Google Scholar 

  • Kerr MC, Wang JT, Castro NA, Hamilton NA, Town L, Brown DL, Meunier FA, Brown NF, Stow JL, Teasdale RD (2010) Inhibition of the PtdIns(5) kinase PIKfyve disrupts intracellular replication of Salmonella. EMBO J 29:1331–1347

    PubMed  CAS  Google Scholar 

  • Kim J, Jahng WJ, Di Vizio D, Lee JS, Jhaveri R, Rubin MA, Shisheva A, Freeman MR (2007) The phosphoinositide kinase PIKfyve mediates epidermal growth factor receptor trafficking to the nucleus. Cancer Res 67:9229–9237

    PubMed  CAS  Google Scholar 

  • Klaus F, Gehring EM, Zurn A, Laufer J, Lindner R, Strutz-Seebohm N, Tavare JM, Rothstein JD, Boehmer C, Palmada M, Gruner I, Lang UE, Seebohm G, Lang F (2009a) Regulation of the Na(+)-coupled glutamate transporter EAAT3 by PIKfyve. Neurochem Int 54:372–377

    PubMed  CAS  Google Scholar 

  • Klaus F, Laufer J, Czarkowski K, Strutz-Seebohm N, Seebohm G, Lang F (2009b) PIKfyve-dependent regulation of the Cl- channel ClC-2. Biochem Biophys Res Commun 381:407–411

    PubMed  CAS  Google Scholar 

  • Kong AM, Horan KA, Sriratana A, Bailey CG, Collyer LJ, Nandurkar HH, Shisheva A, Layton MJ, Rasko JE, Rowe T, Mitchell CA (2006) Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 26:6065–6081

    PubMed  CAS  Google Scholar 

  • Lecompte O, Poch O, Laporte J (2008) PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci 33:453–460

    PubMed  CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    PubMed  CAS  Google Scholar 

  • Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ, Weisman LS, Meisler MH (2011) Pathogenic mechanism of the Fig. 4 mutation responsible for Charcot-Marie-Tooth disease CMT4 J. PLoS Genet 7:e1002104

    PubMed  CAS  Google Scholar 

  • Li S, Tiab L, Jiao X, Munier FL, Zografos L, Frueh BE, Sergeev Y, Smith J, Rubin B, Meallet MA, Forster RK, Hejtmancik JF, Schorderet DF (2005) Mutations in PIP5K3 are associated with Francois-Neetens mouchetee fleck corneal dystrophy. Am J Hum Genet 77:54–63

    PubMed  CAS  Google Scholar 

  • Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    PubMed  CAS  Google Scholar 

  • Liu Y, Bruzik KS, Ananthanarayanan B, Cho W (2003) New aspects of formation of 1,2-cyclic phosphates by phospholipase C-delta1. Bioorg Med Chem 11:2471–2475

    PubMed  CAS  Google Scholar 

  • Majerus PW, York JD (2009) Phosphoinositide phosphatases and disease. J Lipid Res 50(Suppl):249–254

    Google Scholar 

  • McEwen RK, Dove SK, Cooke FT, Painter GF, Holmes AB, Shisheva A, Ohya Y, Parker PJ, Michell RH (1999) Complementation analysis in PtdInsP kinase-deficient yeast mutants demonstrates that Schizosaccharomyces pombe and murine Fab1p homologues are phosphatidylinositol 3-phosphate 5-kinases. J Biol Chem 274:33905–33912

    PubMed  CAS  Google Scholar 

  • Meijer HJ, Berrie CP, Iurisci C, Divecha N, Musgrave A, Munnik T (2001) Identification of a new polyphosphoinositide in plants, phosphatidylinositol 5-monophosphate (PtdIns5P), and its accumulation upon osmotic stress. Biochem J 360:491–498

    PubMed  CAS  Google Scholar 

  • Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63

    PubMed  CAS  Google Scholar 

  • Morris JB, Hinchliffe KA, Ciruela A, Letcher AJ, Irvine RF (2000) Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett 475:57–60

    PubMed  CAS  Google Scholar 

  • Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (1999) The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proc Natl Acad Sci U S A 96:3640–3645

    PubMed  CAS  Google Scholar 

  • Murray JW, Wolkoff AW (2003) Roles of the cytoskeleton and motor proteins in endocytic sorting. Adv Drug Deliv Rev 55:1385–1403

    PubMed  CAS  Google Scholar 

  • Murray JL, Mavrakis M, McDonald NJ, Yilla M, Sheng J, Bellini WJ, Zhao L, Le Doux JM, Shaw MW, Luo CC, Lippincott-Schwartz J, Sanchez A, Rubin DH, Hodge TW (2005) Rab9 GTPase is required for replication of human immunodeficiency virus type 1, filoviruses, and measles virus. J Virol 79:11742–11751

    PubMed  CAS  Google Scholar 

  • Nicot AS, Fares H, Payrastre B, Chisholm AD, Labouesse M, Laporte J (2006) The phosphoinositide kinase PIKfyve/Fab1p regulates terminal lysosome maturation in caenorhabditis elegans. Mol Biol Cell 17:3062–3074

    PubMed  CAS  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078

    PubMed  CAS  Google Scholar 

  • Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, Pearson RB, Layton MJ, Forrai A, Nandurkar HH, Mitchell CA (2006) The inositol polyphosphate 5-phosphatase, PIPP, Is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 17:607–622

    PubMed  CAS  Google Scholar 

  • Osborne SL, Wen PJ, Boucheron C, Nguyen HN, Hayakawa M, Kaizawa H, Parker PJ, Vitale N, Meunier FA (2008) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283:2804–2813

    PubMed  CAS  Google Scholar 

  • Pryor PR, Luzio JP (2009) Delivery of endocytosed membrane proteins to the lysosome. Biochim Biophys Acta 1793:615–624

    PubMed  CAS  Google Scholar 

  • Rameh LE, Tolias KF, Duckworth BC, Cantley LC (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196

    PubMed  CAS  Google Scholar 

  • Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749

    PubMed  CAS  Google Scholar 

  • Roberts HF, Clarke JH, Letcher AJ, Irvine RF, Hinchliffe KA (2005) Effects of lipid kinase expression and cellular stimuli on phosphatidylinositol 5-phosphate levels in mammalian cell lines. FEBS Lett 579:2868–2872

    PubMed  CAS  Google Scholar 

  • Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14-Fig. 4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36

    PubMed  CAS  Google Scholar 

  • Rusten TE, Rodahl LM, Pattni K, Englund C, Samakovlis C, Dove S, Brech A, Stenmark H (2006) Fab1 phosphatidylinositol 3-phosphate 5-kinase controls trafficking but not silencing of endocytosed receptors. Mol Biol Cell 17:3989–4001

    PubMed  CAS  Google Scholar 

  • Rusten TE, Vaccari T, Lindmo K, Rodahl LM, Nezis IP, Sem-Jacobsen C, Wendler F, Vincent JP, Brech A, Bilder D, Stenmark H (2007) ESCRTs and Fab1 regulate distinct steps of autophagy. Curr Biol 17:1817–1825

    PubMed  CAS  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119:3944–3957

    PubMed  CAS  Google Scholar 

  • Sarkes D, Rameh LE (2010) A novel HPLC-based approach makes possible the spatial characterization of cellular PtdIns5P and other phosphoinositides. Biochem J 428:375–384

    PubMed  CAS  Google Scholar 

  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (1999) PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. Effect of insulin. J Biol Chem 274:21589–21597

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (2000) PIKfyve lipid kinase is a protein kinase: downregulation of 5’-phosphoinositide product formation by autophosphorylation. Biochemistry 39:15980–15989

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov O, Shisheva A (2001) Selective insulin-induced activation of class I(A) phosphoinositide 3-kinase in PIKfyve immune complexes from 3T3-L1 adipocytes. Mol Cell Endocrinol 181:35–46

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R, Shisheva A (2002a) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276–47284

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (2002b) Phosphatidylinositol 3-phosphate-interacting domains in PIKfyve. Binding specificity and role in PIKfyve. Endomenbrane localization. J Biol Chem 277:6073–6079

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Dondapati R, Mlak K, Deeb R, Silver R, Shisheva A (2004a) A mammalian ortholog of Saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity. Mol Cell Biol 24:10437–10447

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Shisheva A (2004b) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Shisheva A (2005) Analysis of potential binding of the recombinant Rab9 effector p40 to phosphoinositide-enriched synthetic liposomes. Methods Enzymol 403:696–705

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Shisheva A (2005) Acquisition of unprecedented phosphatidylinositol 3,5-bisphosphate rise in hyperosmotically stressed 3T3-L1 adipocytes, mediated by ArPIKfyve-PIKfyve pathway. J Biol Chem 280:7883–7889

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. Novel Sac phosphatase joins the ArPIKfyve-PIKfyve complex. J Biol Chem 282:23878–23891

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384:766–779

    PubMed  CAS  Google Scholar 

  • Sbrissa D. Ikonomov OC Filios C, Delvecchio K, Shisheva A (2012) Functional dissociation between PIKfyve-synthesized PtdIns5P and PtdIns(3,5)P2 by means of the PIKfyve inhibitor YM201636. Am J Physiol Cell Physiol 303:C436–46

    Google Scholar 

  • Schnapp BJ (2003) Trafficking of signaling modules by kinesin motors. J Cell Sci 116:2125–2135

    PubMed  CAS  Google Scholar 

  • Scott CC, Gruenberg J (2011) Ion flux and the function of endosomes and lysosomes: pH is just the start: the flux of ions across endosomal membranes influences endosome function not only through regulation of the luminal pH. BioEssays 33:103–110

    PubMed  CAS  Google Scholar 

  • Seebohm G, Strutz-Seebohm N, Birkin R, Dell G, Bucci C, Spinosa MR, Baltaev R, Mack AF, Korniychuk G, Choudhury A, Marks D, Pagano RE, Attali B, Pfeufer A, Kass RS, Sanguinetti MC, Tavare JM, Lang F (2007) Regulation of endocytic recycling of KCNQ1/KCNE1 potassium channels. Circ Res 100:686–692

    PubMed  CAS  Google Scholar 

  • Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2+) homeostasis. Nat Cell Biol 11:769–776

    PubMed  CAS  Google Scholar 

  • Shin HW, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618

    PubMed  CAS  Google Scholar 

  • Shisheva A, Sbrissa D, Ikonomov O (1999) Cloning, characterization, and expression of a novel Zn2+-binding FYVE finger-containing phosphoinositide kinase in insulin-sensitive cells. Mol Cell Biol 19:623–634

    PubMed  CAS  Google Scholar 

  • Shisheva A (2001) PIKfyve: the road to PtdIns 5-P and PtdIns 3,5-P(2). Cell Biol Int 25:1201–1206

    PubMed  CAS  Google Scholar 

  • Shisheva A, Rusin B, Ikonomov OC, DeMarco C, Sbrissa D (2001) Localization and insulin-regulated relocation of phosphoinositide 5-kinase PIKfyve in 3T3-L1 adipocytes. J Biol Chem 276:11859–11869

    PubMed  CAS  Google Scholar 

  • Shisheva A, DeMarco C, Ikonomov O, Sbrissa D (2002) PIKfyve and acute insulin actions. In: Sima A, Shafrir E e (eds) Insulin signaling: from cultured cells to animal models. 189–206

    Google Scholar 

  • Shisheva A (2008a) Phosphoinositides in insulin action on GLUT4 dynamics: not just PtdIns(3,4,5)P3. Am J Physiol Endocrinol Metab 295:536–544

    Google Scholar 

  • Shisheva A (2008b) PIKfyve: Partners, significance, debates and paradoxes. Cell Biol Int 32:591–604

    PubMed  CAS  Google Scholar 

  • Shojaiefard M, Strutz-Seebohm N, Tavare JM, Seebohm G, Lang F (2007) Regulation of the Na(+), glucose cotransporter by PIKfyve and the serum and glucocorticoid inducible kinase SGK1. Biochem Biophys Res Commun 359:843–847

    PubMed  CAS  Google Scholar 

  • Silswal N, Parelkar NK, Wacker MJ, Brotto M, Andresen J (2011) Phosphatidylinositol 3,5-bisphosphate increases intracellular free Ca2+ in arterial smooth muscle cells and elicits vasocontraction. Am J Physiol Heart Circ Physiol 300:2016–2026

    Google Scholar 

  • Sopjani M, Kunert A, Czarkowski K, Klaus F, Laufer J, Foller M, Lang F (2010) Regulation of the Ca(2+) channel TRPV6 by the kinases SGK1, PKB/Akt, and PIKfyve. J Membr Biol 233:35–41

    PubMed  CAS  Google Scholar 

  • Strauss HM, Keller S (2008) Pharmacological interference with protein-protein interactions mediated by coiled-coil motifs. Handb Exp Pharmacol 186:461–482

    PubMed  CAS  Google Scholar 

  • Strutz-Seebohm N, Shojaiefard M, Christie D, Tavare J, Seebohm G, Lang F (2007) PIKfyve in the SGK1 mediated regulation of the creatine transporter SLC6A8. Cell Physiol Biochem 20:729–734

    PubMed  CAS  Google Scholar 

  • Stuffers S, Sem Wegner C, Stenmark H, Brech A (2009) Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–937

    PubMed  CAS  Google Scholar 

  • Thoidis G, Kandror KV (2001) A Glut4-vesicle marker protein, insulin-responsive aminopeptidase, is localized in a novel vesicular compartment in PC12 cells. Traffic 2:577–587

    PubMed  CAS  Google Scholar 

  • Thorens B, Roth J (1996) Intracellular targeting of GLUT4 in transfected insulinoma cells: evidence for association with constitutively recycling vesicles distinct from synaptophysin and insulin vesicles. J Cell Sci 109(Pt 6):1311–1323

    PubMed  CAS  Google Scholar 

  • Touchberry CD, Bales IK, Stone JK, Rohrberg TJ, Parelkar NK, Nguyen T, Fuentes O, Liu X, Qu CK, Andresen JJ, Valdivia HH, Brotto M, Wacker MJ (2010) Phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) potentiates cardiac contractility via activation of the ryanodine receptor. J Biol Chem 285:40312–40321

    PubMed  CAS  Google Scholar 

  • Tronchere H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel JL, Payrastre B (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    PubMed  CAS  Google Scholar 

  • Tsien RW, Ellinor PT, Horne WA (1991) Molecular diversity of voltage-dependent Ca2 + channels. Trends Pharmacol Sci 12:349–354

    PubMed  CAS  Google Scholar 

  • Tsujita K, Itoh T, Ijuin T, Yamamoto A, Shisheva A, Laporte J, Takenawa T (2004) Myotubularin regulates the function of the late endosome through the gram domain-phosphatidylinositol 3,5-bisphosphate interaction. J Biol Chem 279:13817–13824

    PubMed  CAS  Google Scholar 

  • Tsuruta F, Green EM, Rousset M, Dolmetsch RE (2009) PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187:279–294

    PubMed  CAS  Google Scholar 

  • van der Goot FG, Gruenberg J (2006) Intra-endosomal membrane traffic. Trends Cell Biol 16:514–521

    PubMed  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M, Bilanges B (2010) The emerging mechanisms of isoform-specific PI3 K signalling. Nat Rev Mol Cell Biol 11:329–341

    PubMed  CAS  Google Scholar 

  • Vicinanza M, D’Angelo G, Di Campli A, De Matteis MA (2008) Function and dysfunction of the PI system in membrane trafficking. EMBO J 27:2457–2470

    PubMed  CAS  Google Scholar 

  • Walker DM, Urbe S, Dove SK, Tenza D, Raposo G, Clague MJ (2001) Characterization of MTMR3. An inositol lipid 3-phosphatase with novel substrate specificity. Curr Biol 11:1600–1605

    PubMed  CAS  Google Scholar 

  • Whiteford CC, Brearley CA, Ulug ET (1997) Phosphatidylinositol 3,5-bisphosphate defines a novel PI 3-kinase pathway in resting mouse fibroblasts. Biochem J 323(Pt 3):597–601

    PubMed  CAS  Google Scholar 

  • Woodman PG, Futter CE (2008) Multivesicular bodies: co-ordinated progression to maturity. Curr Opin Cell Biol 20:408–414

    PubMed  CAS  Google Scholar 

  • Yamamoto A, DeWald DB, Boronenkov IV, Anderson RA, Emr SD, Koshland D (1995) Novel PI(4)P 5-kinase homologue, Fab1p, essential for normal vacuole function and morphology in yeast. Mol Biol Cell 6:525–539

    PubMed  CAS  Google Scholar 

  • Yuan Y, Gao X, Guo N, Zhang H, Xie Z, Jin M, Li B, Yu L, Jing N (2007) rSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Res 17:919–932

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 104:17518–17523

    PubMed  CAS  Google Scholar 

  • Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of Fig. 4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001

    PubMed  Google Scholar 

  • Zhang J, Guan Z, Murphy AN, Wiley SE, Perkins GA, Worby CA, Engel JL, Heacock P, Nguyen OK, Wang JH, Raetz CR, Dowhan W, Dixon JE (2011) Mitochondrial phosphatase PTPMT1 is essential for cardiolipin biosynthesis. Cell Metab 13:690–700

    PubMed  CAS  Google Scholar 

  • Zou J, Marjanovic J, Kisseleva MV, Wilson M, Majerus PW (2007) Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci U S A 104:16834–16839

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I am grateful to the past and current members of my laboratory, and particularly to Drs. Ogi Ikonomov and Diego Sbrissa for their excellent work and stimulating discussions. I thank Dr. Steven Cala for his insightful comments and Violeta Shisheva for her many years of support. The work described from my laboratory was funded by ADA, JDFI, and NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Assia Shisheva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shisheva, A. (2012). PIKfyve and its Lipid Products in Health and in Sickness. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_7

Download citation

Publish with us

Policies and ethics