Skip to main content

Phosphoinositides in Neuroexocytosis and Neuronal Diseases

  • Chapter
  • First Online:

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

Phosphoinositides (PIs) are a family of phospholipids derived from phosphatidylinositol (PtdIns), whose location, synthesis, and degradation depend on specific PI kinases and phosphatases. PIs have emerged as fundamental regulators of secretory processes, such as neurotransmitter release, hormone secretion, and histamine release in allergic responses. In neurons and neuroendocrine cells, regulated secretion requires the calcium-dependent fusion of transmitter-containing vesicles with the plasma membrane. The role played by PIs in exocytosis is best exemplified by the Ca2+-dependent binding of vesicular Synaptotagmin1 to the plasma membrane PtdIns(4,5)P2, and the recently demonstrated role of PtdIns(4,5)P2 in the mobilization of secretory vesicles to the plasma membrane. New evidence has also recently emerged of an alternative PI pathway that can control exocytosis positively (via PtdIn3P) or negatively (via PtdIns(3,5)P2). However, the positive or negative effectors for these pathways remain to be established. Reducing PtdIns(3,5)P2 potentiates neuroexocytosis but leads to neuronal degeneration and has been linked to certain forms of Charcot-Marie-Tooth disease and amyotrophic lateral sclerosis. The goal of this review is to describe the role of PIs in neuroexocytosis and explore the current hypotheses linking these effects to human diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

\( {\text{A}}\beta{\text{-}1}\;42 \) :

Amyloid beta peptide

Arf-1:

ADP-ribosylation factor 1

CAPS:

Ca2+-dependent activator protein for secretion

Cdc42:

Cell division control protein 42 homolog

CMT:

Charcot-Marie-Tooth

ER:

Endoplasmic reticulum

FAD:

Familial Alzheimer’s disease

FYVE:

Fab1, YGL023,VPS27, and EEA1

GLUT4:

Glucose transporter type 4

LDCVs:

Large dense core vesicles

Mtmr:

Myotubularin-related protein

NCS-1:

Neuronal calcium sensor 1

PIKfyve:

Phosphoinositide kinase for five positions containing a Fyve finger

TGN:

Trans-Golgi network

PI:

Phosphoinositide

SNARE:

Soluble NSF attachment protein receptor

Syt:

Synaptotagmin

References

  • Aikawa Y, Martin TF (2003) ARF6 regulates a plasma membrane pool of phosphatidy linositol(4,5)bisphosphate required for regulated exocytosis. J Cell Biol 162(4):647–659

    Article  PubMed  CAS  Google Scholar 

  • Anderson RJ, Osborne SL, Meunier FA, Painter GF (2010) Regioselective approach to phosphatidylinositol 3,5-bisphosphates: syntheses of the native phospholipid and biotinylated short-chain derivative. J Org Chem 75(11):3541–3551. doi:10.1021/jo100393c

    Article  PubMed  CAS  Google Scholar 

  • Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M (2005) The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J Biol Chem 280(17):17346–17352. doi:10.1074/jbc.M413307200 M413307200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Tuymetova G, Tsiomenko A, Varnai P, Balla T (2005) A plasma membrane pool of phosphatidylinositol 4-phosphate is generated by phosphatidylinositol 4-kinase type-III alpha: studies with the PH domains of the oxysterol binding protein and FAPP1. Mol Biol Cell 16(3):1282–1295. doi:10.1091/mbc.E04-07-0578

    Article  PubMed  CAS  Google Scholar 

  • Balla A, Kim YJ, Varnai P, Szentpetery Z, Knight Z, Shokat KM, Balla T (2008) Maintenance of hormone-sensitive phosphoinositide pools in the plasma membrane requires phosphatidylinositol 4-kinase IIIalpha. Mol Biol Cell 19(2):711–721. doi:10.1091/mbc.E07-07-0713

    Article  PubMed  CAS  Google Scholar 

  • Berger P, Bonneick S, Willi S, Wymann M, Suter U (2002) Loss of phosphatase activity in myotubularin-related protein 2 is associated with Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet 11(13):1569–1579

    Article  PubMed  CAS  Google Scholar 

  • Berger P, Berger I, Schaffitzel C, Tersar K, Volkmer B, Suter U (2006) Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Hum Mol Genet 15(4):569–579. doi:10.1093/hmg/ddi473 ddi473 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Berman DE, Dall’Armi C, Voronov SV, McIntire LB, Zhang H, Moore AZ, Staniszewski A, Arancio O, Kim TW, Di Paolo G (2008) Oligomeric amyloid-beta peptide disrupts phosphatidylinositol-4,5-bisphosphate metabolism. Nat Neurosci 11(5):547–554. doi:10.1038/nn.2100 nn.2100 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Cabezas A, Pattni K, Stenmark H (2006) Cloning and subcellular localization of a human phosphatidylinositol 3-phosphate 5-kinase, PIKfyve/Fab1. Gene 371(1):34–41. doi:10.1016/j.gene.2005.11.009 S0378-1119(05)00702-X [pii]

    Article  PubMed  CAS  Google Scholar 

  • Catimel B, Schieber C, Condron M, Patsiouras H, Connolly L, Catimel J, Nice EC, Burgess AW, Holmes AB (2008) The PI(3,5)P2 and PI(4,5)P2 interactomes. J Proteome Res 7(12):5295–5313

    Article  PubMed  CAS  Google Scholar 

  • Catimel B, Yin MX, Schieber C, Condron M, Patsiouras H, Catimel J, Robinson DE, Wong LS, Nice EC, Holmes AB, Burgess AW (2009) PI(3,4,5)P3 Interactome. J Proteome Res 8(7):3712–3726. doi:10.1021/pr900320a

    Article  PubMed  CAS  Google Scholar 

  • Chaussade C, Pirola L, Bonnafous S, Blondeau F, Brenz-Verca S, Tronchere H, Portis F, Rusconi S, Payrastre B, Laporte J, Van Obberghen E (2003) Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol 17(12):2448–2460. doi:10.1210/me.2003-0261

    Article  PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448(7149):68–72. doi:10.1038/nature05876 nature05876 [pii]

    Article  PubMed  CAS  Google Scholar 

  • De Lartigue J, Polson H, Feldman M, Shokat K, Tooze SA, Urbe S, Clague MJ (2009) PIKfyve regulation of endosome-linked pathways. Traffic 10(7):883–893

    Article  PubMed  Google Scholar 

  • Demmel L, Gravert M, Ercan E, Habermann B, Muller-Reichert T, Kukhtina V, Haucke V, Baust T, Sohrmann M, Kalaidzidis Y, Klose C, Beck M, Peter M, Walch-Solimena C (2008) The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol Biol Cell 19(5):1991–2002. doi:10.1091/mbc.E06-10-0937

    Article  PubMed  CAS  Google Scholar 

  • Di Paolo G, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, De Camilli P (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431(7007):415–422

    Article  PubMed  Google Scholar 

  • Dixon MJ, Gray A, Boisvert FM, Agacan M, Morrice NA, Gourlay R, Leslie NR, Downes CP, Batty IH (2011) A screen for novel phosphoinositide 3-kinase effector proteins. Mol Cell Proteomics 10 (4):M110 003178. doi:10.1074/mcp.M110.003178

  • Dove SK, Piper RC, McEwen RK, Yu JW, King MC, Hughes DC, Thuring J, Holmes AB, Cooke FT, Michell RH, Parker PJ, Lemmon MA (2004) Svp1p defines a family of phosphatidylinositol 3,5-bisphosphate effectors. EMBO j 23(9):1922–1933. doi:10.1038/sj.emboj.7600203

    Article  PubMed  CAS  Google Scholar 

  • Eberhard DA, Cooper CL, Low MG, Holz RW (1990) Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem J 268(1):15–25

    PubMed  CAS  Google Scholar 

  • Falasca M, Hughes WE, Dominguez V, Sala G, Fostira F, Fang MQ, Cazzolli R, Shepherd PR, James DE, Maffucci T (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signalling. J Biol Chem 282(38):28226–28236. doi:10.1074/jbc.M704357200 M704357200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18(24):4868–4878. doi:10.1093/hmg/ddp460 ddp460 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2010) PtdIns(3,5)P2 and autophagy in mouse models of neurodegeneration. Autophagy 6(1):170–171 10626 [pii]

    Article  PubMed  Google Scholar 

  • Godi A, Pertile P, Meyers R, Marra P, Di Tullio G, Iurisci C, Luini A, Corda D, De Matteis MA (1999) ARF mediates recruitment of PtdIns-4-OH kinase-beta and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat Cell Biol 1(5):280–287

    Article  PubMed  CAS  Google Scholar 

  • Grishanin RN, Kowalchyk JA, Klenchin VA, Ann K, Earles CA, Chapman ER, Gerona RR, Martin TF (2004) CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein. Neuron 43(4):551–562

    Article  PubMed  CAS  Google Scholar 

  • Hammond GR, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G (2006) Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J Cell Sci 119(Pt 10):2084–2094. doi:10.1242/jcs.02912 119/10/2084 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Martin TF (1992) Resolution of regulated secretion into sequential Mg ATP-dependent and calcium-dependent stages mediated by distinct cytosolic proteins. J Cell Biol 119(1):139–151

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Martin TF (1993) Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca(2+)-activated secretion. Nature 366(6455):572–575

    Article  PubMed  CAS  Google Scholar 

  • Hay JC, Fisette PL, Jenkins GH, Fukami K, Takenawa T, Anderson RA, Martin TF (1995) ATP-dependent inositide phosphorylation required for Ca(2+)-activated secretion. Nature 374(6518):173–177

    Article  PubMed  CAS  Google Scholar 

  • Haynes LP, Thomas GM, Burgoyne RD (2005) Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase beta and trans-Golgi network-plasma membrane traffic. J Biol Chem 280(7):6047–6054

    Article  PubMed  CAS  Google Scholar 

  • Herrera F, Chen Q, Fischer WH, Maher P, Schubert DR (2009) Synaptojanin-1 plays a key role in astrogliogenesis: possible relevance for Down’s syndrome. Cell Death Differ 16(6):910–920. doi:10.1038/cdd.2009.24 cdd200924 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1955a) Effects of acetylcholine on phosphate turnover in phospholipids of brain cortex in vitro. Biochim Biophys Acta 16(2):229–237

    Article  PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1955b) Effects of acetylcholine on the turnover of phosphoryl units in individual phospholipids of pancreas slices and brain cortex slices. Biochim Biophys Acta 18(1):102–110

    Article  PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1958) Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J Biol Chem 233(4):818–821

    PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE (1954) Effects of acetylcholine on phospholipids in the pancreas. J Biol Chem 209(2):549–558

    PubMed  CAS  Google Scholar 

  • Hokin LE, Hokin MR (1960) The role of phosphatidic acid and phosphoinositide in transmembrane transport elicited by acetylcholine and other humoral agents. Int Rev Neurobiol 2:99–136

    Article  PubMed  CAS  Google Scholar 

  • Hokin MR, Hokin LE, Shelp WD (1960) The effects of acetylcholine on the turnover of phosphatidic acid and phosphoinositide in sympathetic ganglia, and in various parts of the central nervous system in vitro. J Gen Physiol 44:217–226

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2006) Localized PtdIns 3,5–P2 synthesis to regulate early endosome dynamics and fusion. Am J Physiol Cell Physiol 291(2):C393–C404. doi:10.1152/ajpcell.00019.2006 00019.2006 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Dondapati R, Shisheva A (2007) ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes. Exp Cell Res 313(11):2404–2416. doi:10.1016/j.yexcr.2007.03.024 S0014-4827(07)00113-9 [pii]

    Article  PubMed  CAS  Google Scholar 

  • James DJ, Khodthong C, Kowalchyk JA, Martin TF (2008) Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J Cell Biol 182(2):355–366. doi:10.1083/jcb.200801056 jcb.200801056 [pii]

    Article  PubMed  CAS  Google Scholar 

  • James DJ, Kowalchyk J, Daily N, Petrie M, Martin TF (2009) CAPS drives trans-SNARE complex formation and membrane fusion through syntaxin interactions. Proc Nat Acad Sci USA 106(41):17308–17313. doi:10.1073/pnas.0900755106

    Article  CAS  Google Scholar 

  • James DJ, Khodthong C, Kowalchyk JA, Martin TF (2010) Phosphatidylinositol 4,5-bisphosphate regulation of SNARE function in membrane fusion mediated by CAPS. Adv Enzyme Regul 50(1):62–70. doi:10.1016/j.advenzreg.2009.10.012

    Article  PubMed  Google Scholar 

  • Jefferies HB, Cooke FT, Jat P, Boucheron C, Koizumi T, Hayakawa M, Kaizawa H, Ohishi T, Workman P, Waterfield MD, Parker PJ (2008) A selective PIKfyve inhibitor blocks PtdIns(3,5)P(2) production and disrupts endomembrane transport and retroviral budding. EMBO Rep 9(2):164–170. doi:10.1038/sj.embor.7401155 7401155 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Jeffries TR, Dove SK, Michell RH, Parker PJ (2004) PtdIns-specific MPR pathway association of a novel WD40 repeat protein, WIPI49. Mol Biol Cell 15(6):2652–2663. doi:10.1091/mbc.E03-10-0732

    Article  PubMed  CAS  Google Scholar 

  • Johnson EE, Overmeyer JH, Gunning WT, Maltese WA (2006) Gene silencing reveals a specific function of hVps34 phosphatidylinositol 3-kinase in late versus early endosome. J Cell Sci 119(Pt 7):1219–1232

    Article  PubMed  CAS  Google Scholar 

  • Kapp-Barnea Y, Melnikov S, Shefler I, Jeromin A, Sagi-Eisenberg R (2003) Neuronal calcium sensor-1 and phosphatidylinositol 4-kinase beta regulate IgE receptor-triggered exocytosis in cultured mast cells. J immunol 171(10):5320–5327

    PubMed  CAS  Google Scholar 

  • Kim YJ, Guzman-Hernandez ML, Balla T (2011) A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev Cell 21(5):813–824. doi:10.1016/j.devcel.2011.09.005

    Article  PubMed  CAS  Google Scholar 

  • Koizumi S, Rosa P, Willars GB, Challiss RA, Taverna E, Francolini M, Bootman MD, Lipp P, Inoue K, Roder J, Jeromin A (2002) Mechanisms underlying the neuronal calcium sensor-1-evoked enhancement of exocytosis in PC12 cells. J Biol Chem 277(33):30315–30324

    Article  PubMed  CAS  Google Scholar 

  • Kuo W, Herrick DZ, Cafiso DS (2011) Phosphatidylinositol 4,5-bisphosphate alters synaptotagmin 1 membrane docking and drives opposing bilayers closer together. Biochemistry 50(13):2633–2641. doi:10.1021/bi200049c

    Article  PubMed  CAS  Google Scholar 

  • Landman N, Jeong SY, Shin SY, Voronov SV, Serban G, Kang MS, Park MK, Di Paolo G, Chung S, Kim TW (2006) Presenilin mutations linked to familial Alzheimer’s disease cause an imbalance in phosphatidylinositol 4,5-bisphosphate metabolism. Proc Nat Acad Sci U S A 103(51):19524–19529. doi:10.1073/pnas.0604954103

    Article  PubMed  CAS  Google Scholar 

  • Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477 S1534580704000991 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Lewis AE, Sommer L, Arntzen MO, Strahm Y, Morrice NA, Divecha N, D’Santos CS (2011) Identification of nuclear phosphatidylinositol 4,5-bisphosphate-interacting proteins by neomycin extraction. Mol Cell Proteomics 10 (2):M110 003376. doi:10.1074/mcp.M110.003376

  • Loyet KM, Kowalchyk JA, Chaudhary A, Chen J, Prestwich GD, Martin TF (1998) Specific binding of phosphatidylinositol 4,5-bisphosphate to calcium-dependent activator protein for secretion (CAPS), a potential phosphoinositide effector protein for regulated exocytosis. J Biol Chem 273(14):8337–8343

    Article  PubMed  CAS  Google Scholar 

  • Maffucci T, Brancaccio A, Piccolo E, Stein RC, Falasca M (2003) Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J 22(16):4178–4189

    Article  PubMed  CAS  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GR, Cooke FT, Parker PJ, Domin J, Schiavo G (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16(10):4841–4851

    Article  PubMed  CAS  Google Scholar 

  • Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy G, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25(10):2557–2565

    Article  PubMed  CAS  Google Scholar 

  • Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3(6):416–427 tra030605 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Narayan K, Lemmon MA (2006) Determining selectivity of phosphoinositide-binding domains. Methods 39(2):122–133. doi:10.1016/j.ymeth.2006.05.006

    Article  PubMed  CAS  Google Scholar 

  • Noda T, Matsunaga K, Taguchi-Atarashi N, Yoshimori T (2010) Regulation of membrane biogenesis in autophagy via PI3P dynamics. Semin Cell Dev Biol 21(7):671–676. doi:10.1016/j.semcdb.2010.04.002

    Article  PubMed  CAS  Google Scholar 

  • Olsen HL, Hoy M, Zhang W, Bertorello AM, Bokvist K, Capito K, Efanov AM, Meister B, Thams P, Yang SN, Rorsman P, Berggren PO, Gromada J (2003) Phosphatidylinositol 4-kinase serves as a metabolic sensor and regulates priming of secretory granules in pancreatic beta cells. Proc Natl Acad Sci USA 100(9):5187–5192

    Article  PubMed  CAS  Google Scholar 

  • Osborne SL, Wallis TP, Jimenez JL, Gorman JJ, Meunier FA (2007) Identification of secretory granule phosphatidylinositol 4,5-bisphosphate-interacting proteins using an affinity pull down strategy. Mol Cell Proteomics 6(7):1158–1169. doi:10.1074/mcp.M600430-MCP200 M600430-MCP200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Osborne SL, Wen PJ, Boucheron C, Nguyen HN, Hayakawa M, Kaizawa H, Parker PJ, Vitale N, Meunier FA (2008) PIKfyve negatively regulates exocytosis in neurosecretory cells. J Biol Chem 283(5):2804–2813. doi:10.1074/jbc.M704856200 M704856200 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Polson HE, de Lartigue J, Rigden DJ, Reedijk M, Urbe S, Clague MJ, Tooze SA (2010) Mammalian Atg18 (WIPI2) localizes to omegasome-anchored phagophores and positively regulates LC3 lipidation. Autophagy 6(4): 

    Article  Google Scholar 

  • Rajebhosale M, Greenwood S, Vidugiriene J, Jeromin A, Hilfiker S (2003) Phosphatidylinositol 4-OH kinase is a downstream target of neuronal calcium sensor-1 in enhancing exocytosis in neuroendocrine cells. J Biol Chem 278(8):6075–6084

    Article  PubMed  CAS  Google Scholar 

  • Robinson FL, Niesman IR, Beiswenger KK, Dixon JE (2008) Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral neuropathy in mice. Proc Natl Acad Sci U S A 105(12):4916–4921. doi:10.1073/pnas.0800742105 0800742105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AC, Traer C, Wassmer T, Pattni K, Bujny MV, Carlton JG, Stenmark H, Cullen PJ (2006) The mammalian phosphatidylinositol 3-phosphate 5-kinase (PIKfyve) regulates endosome-to-TGN retrograde transport. J Cell Sci 119(Pt 19):3944–3957. doi:10.1242/jcs.03153 jcs.03153 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Schonn JS, Maximov A, Lao Y, Sudhof TC, Sorensen JB (2008) Synaptotagmin-1 and -7 are functionally overlapping Ca2+ sensors for exocytosis in adrenal chromaffin cells. Proc Nat Acad Sci USA 105(10):3998–4003. doi:10.1073/pnas.0712373105

    Article  PubMed  CAS  Google Scholar 

  • Sedej S, Gurung IS, Binz T, Rupnik M (2009) Phosphatidylinositol-4,5-bisphosphate-dependent facilitation of the ATP-dependent secretory activity in mouse pituitary cells. Ann N Y Acad Sci 1152:165–173. doi:10.1111/j.1749-6632.2008.04002.x

    Article  PubMed  CAS  Google Scholar 

  • Tomas A, Yermen B, Regazzi R, Pessin JE, Halban PA (2010) Regulation of insulin secretion by phosphatidylinositol-4,5-bisphosphate. Traffic 11(1):123–137. doi:10.1111/j.1600-0854.2009.00996.x TRA996 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Tsuruta F, Green EM, Rousset M, Dolmetsch RE (2009) PIKfyve regulates CaV1.2 degradation and prevents excitotoxic cell death. J Cell Biol 187 (2):279-294. doi:jcb.200903028 [pii] 10.1083/jcb.200903028

    Google Scholar 

  • Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, De Camilli P, Di Paolo G (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci U S A 105(27):9415–9420. doi:10.1073/pnas.0803756105 0803756105 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX, Macia E, Kirchhausen T, Albanesi JP, Roth MG, Yin HL (2003) Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114(3):299–310

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H, Bonifacino JS, Yin HL (2007) PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol Biol Cell 18(7):2646–2655. doi:10.1091/mbc.E06-10-0897

    Article  PubMed  CAS  Google Scholar 

  • Way G, O’Luanaigh N, Cockcroft S (2000) Activation of exocytosis by cross-linking of the IgE receptor is dependent on ADP-ribosylation factor 1-regulated phospholipase D in RBL- 2H3 mast cells: evidence that the mechanism of activation is via regulation of phosphatidylinositol 4,5-bisphosphate synthesis. Biochem J 346(1):63–70

    Article  PubMed  CAS  Google Scholar 

  • Wen PJ, Osborne SL, Morrow IC, Parton RG, Domin J, Meunier FA (2008) Ca2+ -regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 19(12):5593–5603. doi:10.1091/mbc.E08-06-0595 E08-06-0595 [pii]

    Article  PubMed  CAS  Google Scholar 

  • Wen PJ, Osborne SL, Meunier FA (2011a) Dynamic control of neuroexocytosis by phosphoinositides in health and disease. Prog Lipid Res 50(1):52–61. doi:10.1016/j.plipres.2010.08.001

    Article  PubMed  CAS  Google Scholar 

  • Wen PJ, Osborne SL, Zanin M, Low PC, Wang HT, Schoenwaelder SM, Jackson SP, Wedlich-Soldner R, Vanhaesebroeck B, Keating DJ, Meunier FA (2011b) Phosphatidylinositol(4,5)bisphosphate coordinates actin-mediated mobilization and translocation of secretory vesicles to the plasma membrane of chromaffin cells. Nat Commun 2:491. doi:10.1038/ncomms1500

    Article  PubMed  Google Scholar 

  • Wong K, Meyers dd R, Cantley LC (1997) Subcellular locations of phosphatidylinositol 4-kinase isoforms. J Biol Chem 272(20):13236–13241

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signalling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 104(44):17518–17523. doi:10.1073/pnas.0702275104 0702275104 [pii]

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by two National Health and Medical Research Council (NHMRC) project grants (to F.A.M. and S.L.O.). F.A.M. is a Senior Research Fellow of the NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederic A. Meunier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wen, P.J., Osborne, S.L., Meunier, F.A. (2012). Phosphoinositides in Neuroexocytosis and Neuronal Diseases. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_4

Download citation

Publish with us

Policies and ethics