Skip to main content

Nuclear PI-PLC β1 and Myelodysplastic Syndromes: From Bench to Clinics

  • Chapter
  • First Online:
Phosphoinositides and Disease

Abstract

Myelodysplastic syndromes (MDS), clonal hematopoietic stem-cell disorders mainly affecting older adult patients, show ineffective hematopoiesis in one or more of the lineages of the bone marrow. A number of MDS progresses to acute myeloid leukemia (AML) with the involvement of genetic and epigenetic mechanisms affecting PI-PLC β1. The molecular mechanisms underlying the MDS evolution to AML are still unclear, even though it is now clear that the nuclear signaling elicited by PI-PLC β1, Cyclin D3, and Akt plays an important role in the control of the balance between cell cycle progression and apoptosis in both normal and pathologic conditions. Moreover, a correlation between other PI-PLCs, such as PI-PLC β3, kinases and phosphatases has been postulated in MDS pathogenesis. Here, we review the findings hinting at the role of nuclear lipid signaling pathways in MDS, which could become promising therapeutic targets.

The authors ‘Sara Mongiorgi and Matilde Y. Follo’ are equally contributed to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett JM, Catovsky D, Daniel MT, Flandrin G, Galton DA, Gralnick HR, Sultan C (1982) Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 51:189–199

    PubMed  CAS  Google Scholar 

  • Braiteh F, Soriano AO, Garcia-Manero G et al (2008) Phase I study of epigenetic modulation with 5-azacytidine and valproic acid in patients with advanced cancers. Clin Cancer Res 14:6296–6301

    Article  PubMed  CAS  Google Scholar 

  • Cain JA, Xiang Z, O’Neal J et al (2007) Myeloproliferative disease induced by TEL-PDGFRB displays dynamic range sensitivity to Stat5 gene dosage. Blood 109:3906–3914

    Article  PubMed  CAS  Google Scholar 

  • Choudhary C, Brandts C, Schwable J et al (2007) Activation mechanisms of STAT5 by oncogenic Flt3-ITD. Blood 110:370–374

    Article  PubMed  CAS  Google Scholar 

  • Cooper AB, Sawai CM, Sicinska E, Powers SE, Sicinski P, Clark MR, Aifantis I (2006) A unique function for cyclin D3 in early B cell development. Nat Immunol 7:489–497

    Article  PubMed  CAS  Google Scholar 

  • Daskalakis M, Nguyen TT, Nguyen C et al (2002) Demethylation of a hypermethylated P15/INK4B gene in patients with myelodysplastic syndrome by 5-Aza-2′-deoxycytidine (decitabine) treatment. Blood 100:2957–2964

    Article  PubMed  CAS  Google Scholar 

  • Faenza I, Bregoli L, Ramazzotti G et al (2008) Nuclear phospholipase Cbeta1 and cellular differentiation. Front Biosci 13:2452–2463

    Article  PubMed  CAS  Google Scholar 

  • Faenza I, Matteucci A, Manzoli L et al (2000) A role for nuclear phospholipase Cbeta1 in cell cycle control. J Biol Chem 275:30520–30524

    Article  PubMed  CAS  Google Scholar 

  • Faenza I, Ramazzotti G, Bavelloni A et al (2007) Inositide-dependent phospholipase C signaling mimics insulin in skeletal muscle differentiation by affecting specific regions of the cyclin D3 promoter. Endocrinology 148:1108–1117

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P, Mufti GJ, Hellstrom-Lindberg E et al (2009) Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 10:223–232

    Article  PubMed  CAS  Google Scholar 

  • Fenaux P, Raza A, Mufti GJ et al (2007) A multicenter phase 2 study of the farnesyltransferase inhibitor tipifarnib in intermediate—to high-risk myelodysplastic syndrome. Blood 109:4158–4163

    Article  PubMed  CAS  Google Scholar 

  • Fiume R, Ramazzotti G, Teti G et al (2009) Involvement of nuclear PLCbeta1 in lamin B1 phosphorylation and G2/M cell cycle progression. FASEB J 23:957–966

    Article  PubMed  CAS  Google Scholar 

  • Follo MY, Bosi C, Finelli C et al (2006) Real-time PCR as a tool for quantitative analysis of PI-PLCbeta1 gene expression in myelodysplastic syndrome. Int J Mol Med 18:267–271

    PubMed  CAS  Google Scholar 

  • Follo MY, Finelli C, Bosi C et al (2008) PI-PLCbeta-1 and activated Akt levels are linked to azacitidine responsiveness in high-risk myelodysplastic syndromes. Leukemia 22:198–200

    Article  PubMed  CAS  Google Scholar 

  • Follo MY, Finelli C, Clissa C et al (2009a) Phosphoinositide-phospholipase Cbeta1 mono-allelic deletion is associated with myelodysplastic syndromes evolution into acute myeloid leukemia. J Clin Oncol 27:782–790

    Article  PubMed  Google Scholar 

  • Follo MY, Finelli C, Mongiorgi S et al (2009b) Reduction of phosphoinositide-phospholipase Cbeta1 methylation predicts the responsiveness to azacitidine in high-risk MDS. Proc Natl Acad Sci U S A 106:16811–16816

    Article  PubMed  Google Scholar 

  • Follo MY, Finelli C, Mongiorgi S et al (2011) Synergistic induction of PI-PLCbeta1 signaling by azacitidine and valproic acid in high-risk myelodysplastic syndromes. Leukemia 25:271–280

    Article  PubMed  CAS  Google Scholar 

  • Follo MY, Mongiorgi S, Bosi C et al (2007) The Akt/mammalian target of rapamycin signal transduction pathway is activated in high-risk myelodysplastic syndromes and influences cell survival and proliferation. Cancer Res 67:4287–4294

    Article  PubMed  CAS  Google Scholar 

  • Follo MY, Mongiorgi S, Finelli C et al (2010) Nuclear inositide signaling in myelodysplastic syndromes. J Cell Biochem 109:1065–1071

    PubMed  CAS  Google Scholar 

  • Furukawa Y (2002) Cell cycle control genes and hematopoietic cell differentiation. Leuk Lymphoma 43:225–231

    Article  PubMed  CAS  Google Scholar 

  • Greenberg P, Cox C, LeBeau MM et al (1997) International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 89:2079–2088

    PubMed  CAS  Google Scholar 

  • Griffiths EA, Gore SD (2008) DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes. Semin Hematol 45:23–30

    Article  PubMed  CAS  Google Scholar 

  • Jabbour E, Kantarjian HM, Koller C, Taher A (2008) Red blood cell transfusions and iron overload in the treatment of patients with myelodysplastic syndromes. Cancer 112:1089–1095

    Article  PubMed  Google Scholar 

  • Kaminskas E, Farrell A, Abraham S et al (2005) Approval summary: azacitidine for treatment of myelodysplastic syndrome subtypes. Clin Cancer Res 11:3604–3608

    Article  PubMed  CAS  Google Scholar 

  • Malcovati L, Germing U, Kuendgen A et al (2007) Time-dependent prognostic scoring system for predicting survival and leukemic evolution in myelodysplastic syndromes. J Clin Oncol 25:3503–3510

    Article  PubMed  Google Scholar 

  • Martelli AM, Fiume R, Faenza I et al (2005) Nuclear phosphoinositide specific phospholipase C (PI-PLC)-beta1: a central intermediary in nuclear lipid-dependent signal transduction. Histol Histopathol 20:1251–1260

    PubMed  CAS  Google Scholar 

  • Martelli AM, Gilmour RS, Bertagnolo V, Neri LM, Manzoli L, Cocco L (1992) Nuclear localization and signalling activity of phosphoinositidase Cbeta in Swiss 3T3 cells. Nature 358:242–245

    Article  PubMed  CAS  Google Scholar 

  • Mercurio C, Minucci S, Pelicci PG (2010) Histone deacetylases and epigenetic therapies of hematological malignancies. Pharmacol Res 62:18–34

    Article  PubMed  CAS  Google Scholar 

  • Minucci S, Pelicci PG (2006) Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer. Nat Rev Cancer 6:38–51

    Article  PubMed  CAS  Google Scholar 

  • Morgan MA, Reuter CW (2006) Molecularly targeted therapies in myelodysplastic syndromes and acute myeloid leukemias. Ann Hematol 85:139–163

    Article  PubMed  CAS  Google Scholar 

  • Neff T, Armstrong SA (2009) Chromatin maps, histone modifications and leukemia. Leukemia 23:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Nyakern M, Tazzari PL, Finelli C et al (2006) Frequent elevation of Akt kinase phosphorylation in blood marrow and peripheral blood mononuclear cells from high-risk myelodysplastic syndrome patients. Leukemia 20:230–238

    Article  PubMed  CAS  Google Scholar 

  • O’Carroll SJ, Mitchell MD, Faenza I, Cocco L, Gilmour RS (2009) Nuclear PLCbeta1 is required for 3T3-L1 adipocyte differentiation and regulates expression of the cyclin D3-cdk4 complex. Cell Signal 21:926–935

    Article  PubMed  Google Scholar 

  • Park S, Chapuis N, Bardet V et al (2008) PI-103, a dual inhibitor of Class IA phosphatidylinositide 3-kinase and mTOR, has antileukemic activity in AML. Leukemia 22:1698–1706

    Article  PubMed  CAS  Google Scholar 

  • Perl AE, Kasner MT, Tsai DE et al (2009) A phase I study of the mammalian target of rapamycin inhibitor sirolimus and MEC chemotherapy in relapsed and refractory acute myelogenous leukemia. Clin Cancer Res 15:6732–6739

    Article  PubMed  CAS  Google Scholar 

  • Peruzzi D, Calabrese G, Faenza I et al (2000) Identification and chromosomal localisation by fluorescence in situ hybridisation of human gene of phosphoinositide-specific phospholipase Cbeta1. Biochim Biophys Acta 1484:175–182

    Article  PubMed  CAS  Google Scholar 

  • Quintas-Cardama A, Tong W, Kantarjian H et al (2008) A phase II study of 5-azacitidine for patients with primary and post-essential thrombocythemia/polycythemia vera myelofibrosis. Leukemia 22:965–970

    Article  PubMed  CAS  Google Scholar 

  • Raj K, John A, Ho A et al (2007) CDKN2B methylation status and isolated chromosome 7 abnormalities predict responses to treatment with 5-azacytidine. Leukemia 21:1937–1944

    Article  PubMed  CAS  Google Scholar 

  • Schwaller J, Parganas E, Wang D et al (2000) Stat5 is essential for the myelo—and lymphoproliferative disease induced by TEL/JAK2. Mol Cell 6:693–704

    Article  PubMed  CAS  Google Scholar 

  • Sekeres MA, Maciejewski JP, Giagounidis AA, Wride K, Knight R, Raza A, List AF (2008) Relationship of treatment-related cytopenias and response to lenalidomide in patients with lower-risk myelodysplastic syndromes. J Clin Oncol 26:5943–5949

    Article  PubMed  Google Scholar 

  • Silverman LR, Mufti GJ (2005) Methylation inhibitor therapy in the treatment of myelodysplastic syndrome. Nat Clin Pract Oncol 2(Suppl 1):12–23

    Article  Google Scholar 

  • Srinivasan S, Schiffer CA (2008) Current treatment options and strategies for myelodysplastic syndromes. Expert Opin Pharmacother 9:1667–1678

    Article  PubMed  CAS  Google Scholar 

  • Stresemann C, Lyko F (2008) Modes of action of the DNA methyltransferase inhibitors azacytidine and decitabine. Int J Cancer 123:8–13

    Article  PubMed  CAS  Google Scholar 

  • Suh PG, Park JI, Manzoli L et al (2008) Multiple roles of phosphoinositide-specific phospholipase C isozymes. BMB Rep 41:415–434

    Article  PubMed  CAS  Google Scholar 

  • Tefferi A, Vardiman JW (2009) Myelodysplastic syndromes. N Engl J Med 361:1872–1885

    Article  PubMed  CAS  Google Scholar 

  • Vardiman JW, Thiele J, Arber DA et al (2009) The 2008 revision of the World Health Organization (WHO) classification of myeloid neoplasms and acute leukemia: rationale and important changes. Blood 114:937–951

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Ando T, Wang HY, Kawakami Y, Kawakami T (2010) Lyn—and PLCbeta3-dependent regulation of SHP-1 phosphorylation controls Stat5 activity and myelomonocytic leukemia-like disease. Blood 116:6003–6013

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Hong H, Kawakami Y et al (2009) Tumor suppression by phospholipase Cbeta3 via SHP-1-mediated dephosphorylation of Stat5. Cancer Cell 16:161–171

    Article  PubMed  CAS  Google Scholar 

  • Xiao W, Hong H, Kawakami Y, Lowell CA, Kawakami T (2008) Regulation of myeloproliferation and M2 macrophage programming in mice by Lyn/Hck, SHIP, and Stat5. J Clin Invest 118:924–934

    PubMed  CAS  Google Scholar 

  • Ye K (2005) PIKE/nuclear PI 3-kinase signaling in preventing programmed cell death. J Cell Biochem 96:463–472

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Italian MIUR-FIRB (Human Proteome Net and Accordi di Programma 2010), Italian MIUR PRIN and Celgene Corp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio Cocco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mongiorgi, S. et al. (2012). Nuclear PI-PLC β1 and Myelodysplastic Syndromes: From Bench to Clinics. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_11

Download citation

Publish with us

Policies and ethics