Skip to main content

An Introduction to Phosphoinositides

  • Chapter
  • First Online:
Phosphoinositides and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

Phosphoinositides (PIs) are minor components of cellular membranes that play critical regulatory roles in several intracellular functions. This chapter describes the main enzymes regulating the turnover of each of the seven PIs in mammalian cells and introduces to some of their intracellular functions and to some evidences of their involvement in human diseases. Due to the complex interrelation between the distinct PIs and the plethora of functions that they can regulate inside a cell, this chapter is not meant to be a comprehensive coverage of all aspects of PI signalling but rather an introduction to this complex signalling field. For more details of their regulation/functions and extensive description of their intracellular roles, more detailed reviews are suggested on each single topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ArPIKfyve:

Associated regulator of PIKfyve

CML:

Chronic myelogenous leukemia

CMT:

Charcot-Marie-Tooth

DAG:

Diacylglycerol

ER:

Endoplasmic reticulum

FERM:

Four-point one, Ezrin, Radixin, Moesin

FYVE:

Fab1/YOTB/Vac1/EEA1

GPCRs:

G-protein coupled receptors

GRAM:

Glucosyltransferases, Rab-like GTPase activators and Myotubularins

GSK3:

Glycogen synthase kinase 3

HIF:

Hypoxia inducible factor

LPA:

Lysophosphatidic acid

LPI:

Lysophosphatidylinositol

Ins(1,4,5)P 3 :

Inositol 1,4,5-trisphosphate

MIPS:

Myo-inositol-3-phosphate synthase

MTM:

Myotubularin

MTMR:

Myotubularin-related

mTOR:

Mechanistic target of rapamycin

PDK1:

3-phosphoinositide-dependent protein kinase 1

PH:

Pleckstrin homology

PHD:

Plant HomeoDomain

PIKfyve:

PhosphoInositide Kinase for five position containing a Fyve finger

PIPP:

Proline-rich inositol polyphosphate 5-phosphatase

PIs:

phosphoinositides

PI3K:

phosphoinositide 3-kinase

PLA:

phospholipase A

PLC:

Phospholipase C

PLD:

Phospholipase D

PtdIns3P :

Phosphatidylinositol 3-phosphate

PtdIns4P :

Phosphatidylinositol 4-phosphate

PtdIns5P :

Phosphatidylinositol 5-phosphate

PtdIns(3,4)P 2 :

Phosphatidylinositol 3,4-bisphosphate

PtdIns(4,5)P 2 :

Phosphatidylinositol 4,5-bisphosphate

PtdIns(3,5)P 2 :

Phosphatidylinositol 3,5-bisphosphate

PtdIns(3,4,5)P 3 :

Phosphatidylinositol 3,4,5-trisphosphate

PIP4 Ks:

PtdIns5P 4-kinases

PIP5Ks:

PtdIns4P 5-kinases

PTEN:

Phosphatase and tensin homolog

PX:

Phox homology

RTK:

Receptor tyrosine kinase

SHIP:

Src homology 2-domain-containing inositol phosphatase

SKIP:

Skeletal muscle and kidney enriched 5-phosphatase

TAPP:

Tandem PH domain-containing Protein

TGN:

Trans-Golgi network

Vps34:

Vacuolar protein sorting 34

References

  • Arcaro A, Volinia S, Zvelebil MJ et al (1998) Human phosphoinositide 3-kinase C2beta, the role of calcium and the C2 domain in enzyme activity. J Biol Chem 273:33082–33090

    PubMed  CAS  Google Scholar 

  • Arcaro A, Khanzada UK, Vanhaesebroeck B et al (2002) Two distinct phosphoinositide 3-kinases mediate polypeptide growth factor-stimulated PKB activation. EMBO J 21:5097–5108

    PubMed  CAS  Google Scholar 

  • Astle MV, Seaton G, Davies EM et al (2006) Regulation of phosphoinositide signaling by the inositol polyphosphate 5-phosphatases. IUBMB Life 58:451–456

    PubMed  CAS  Google Scholar 

  • Axe EL, Walker SA, Manifava M et al (2008) Autophagosome formation from membrane compartments enriched in phosphatidylinositol 3-phosphate and dynamically connected to the endoplasmic reticulum. J Cell Biol 182:685–701

    PubMed  CAS  Google Scholar 

  • Backer JM (2008) The regulation and function of class III PI3Ks: novel roles for Vps34. Biochem J 410:1–17

    PubMed  CAS  Google Scholar 

  • Bader AG, Kang S, Zhao L et al (2005) Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer 5:921–929

    PubMed  CAS  Google Scholar 

  • Balla A, Balla T (2006) Phosphatidylinositol 4-kinases: old enzymes with emerging functions. Trends Cell Biol 17:351–361

    Google Scholar 

  • Bayascas JR, Wullschleger S, Sakamoto K et al (2008) Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol 28:3258–3272

    PubMed  CAS  Google Scholar 

  • Benistant C, Chapuis H, Roche S (2000) A specific function for phosphatidylinositol 3-kinase α (p85α-p110α) in cell survival and for phosphatidylinositol 3-kinase β (p85α-p110β) in de novo DNA synthesis of human colon carcinoma cells. Oncogene 19:5083–5090

    PubMed  CAS  Google Scholar 

  • Berger P, Schaffitzel C, Berger I et al (2003) Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module. Proc Natl Acad Sci U S A 100:12177–12182

    PubMed  CAS  Google Scholar 

  • Bielas SL, Silhavy JL, Brancati F et al (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036

    PubMed  CAS  Google Scholar 

  • Blagoveshchenskaya A, Cheong FY, Rohde HM et al (2008) Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol 180:803–812

    PubMed  CAS  Google Scholar 

  • Blero D, Payrastre B, Schurmans S et al (2007) Phosphoinositide phosphatases in a network of signalling reactions. Pflugers Arch 455:31–44

    PubMed  CAS  Google Scholar 

  • Boronenkov IV, Anderson RA (1995) The sequence of phosphatidylinositol-4-phosphate 5-kinase defines a novel family of lipid kinases. J Biol Chem 270:2881–2884

    PubMed  CAS  Google Scholar 

  • Bultsma Y, Keune WJ, Divecha N (2010) PIP4Kbeta interacts with and modulates nuclear localization of the high-activity PtdIns5P-4-kinase isoform PIP4Kalpha. Biochem J 430:223–235

    PubMed  CAS  Google Scholar 

  • Bunce MW, Boronenkov IV, Anderson RA (2008) Coordinated activation of nuclear ubiquitin ligase Cul3-SPOP by the generation of phosphatidylinositol 5-phosphate. J Biol Chem 283:8678–8686

    PubMed  CAS  Google Scholar 

  • Bunney TD, Katan M (2010) Phosphoinositide signalling in cancer: beyond PI3K and PTEN. Nat Rev Cancer 10:342–352

    PubMed  CAS  Google Scholar 

  • Cain RJ, Ridley AJ (2009) Phosphoinositide 3-kinases in cell migration. Biol Cell 101:13–29

    PubMed  CAS  Google Scholar 

  • Calleja V, Alcor D, Laguerre M et al (2007) Intramolecular and intermolecular interactions of protein kinase B define its activation in vivo. PLoS Biol 5:e95

    PubMed  Google Scholar 

  • Cao C, Laporte J, Backer JM et al (2007) Myotubularin lipid phosphatase binds the hVps15/hVps34 lipid kinase complex on endosomes. Traffic 8:1052–1067

    PubMed  CAS  Google Scholar 

  • Cao C, Backer JM, Laporte J et al (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346

    PubMed  CAS  Google Scholar 

  • Carracedo A, Pandolfi PP (2008) The PTEN-PI3K pathway: of feedbacks and cross-talks. Oncogene 27:5527–5541

    PubMed  CAS  Google Scholar 

  • Carracedo A, Ma L, Teruya-Feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118:3065–3074

    PubMed  CAS  Google Scholar 

  • Chaussade C, Pirola L, Bonnafous S et al (2003) Expression of myotubularin by an adenoviral vector demonstrates its function as a phosphatidylinositol 3-phosphate [PtdIns(3)P] phosphatase in muscle cell lines: involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol 17:2448–2460

    PubMed  CAS  Google Scholar 

  • Chishti AH, Kim AC, Marfatia SM et al (1998) The FERM domain: a unique module involved in the linkage of cytoplasmic proteins to the membrane. Trends Biochem Sci 23:281–282

    PubMed  CAS  Google Scholar 

  • Choudhury P, Srivastava S, Li Z et al (2006) Specificity of the myotubularin family of phosphatidylinositol-3-phosphatase is determined by the PH/GRAM domain. J Biol Chem 281:31762–31769

    PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ et al (2007) Mutation of FIG 4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    PubMed  CAS  Google Scholar 

  • Chow CY, Landers JE, Bergren SK et al (2009) Deleterious variants of FIG 4, a phosphoinositide phosphatase, in patients with ALS. Am J Hum Genet 84:85–88

    PubMed  CAS  Google Scholar 

  • Clague MJ, Lorenzo O (2005) The myotubularin family of lipid phosphatases. Traffic 6:1063–1069

    PubMed  CAS  Google Scholar 

  • Clark AS, West K, Streicher S et al (2002) Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 1:707–717

    PubMed  CAS  Google Scholar 

  • Clarke JH, Letcher AJ, D’santos CS et al (2001) Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem J 357:905–910

    PubMed  CAS  Google Scholar 

  • Clarke JH, Wang M, Irvine RF (2009) Phosphatidylinositol 5-phosphate 4-kinases localization, regulation and function of Type II phosphatidylinositol 5-phosphate 4-kinases. Adv Enzyme Regul 2009 Nov 6

    Google Scholar 

  • Clement S, Krause U, Desmedt F et al (2001) The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409:92–97

    PubMed  CAS  Google Scholar 

  • Coronas S, Lagarrigue F, Ramel D et al (2008) Elevated levels of PtdIns5P in NPM-ALK transformed cells: implication of PIKfyve. Biochem Biophys Res Commun 372:351–355

    PubMed  CAS  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR et al (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    PubMed  CAS  Google Scholar 

  • Crowell JA, Steele VE, Fay JR (2007) Targeting the AKT protein kinase for cancer chemoprevention. Mol Cancer Ther 6:2139–2148

    PubMed  CAS  Google Scholar 

  • D’Angelo G, Polishchuk E, Di Tullio G et al (2007) Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67

    PubMed  Google Scholar 

  • D’Angelo G, Vicinanza M, Di Campli A et al (2008) The multiple roles of PtdIns(4)P—not just the precursor of PtdIns(4,5)P 2. J Cell Sci 121:1955–1963

    PubMed  Google Scholar 

  • Di Cristofano A, Pandolfi PP (2000) The multiple roles of PTEN in tumor suppression. Cell 100:387–390

    PubMed  Google Scholar 

  • Didichenko SA, Thelen M (2001) Phosphatidylinositol 3-kinase c2alpha contains a nuclear localization sequence and associates with nuclear speckles. J Biol Chem 276:48135–48142

    PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    PubMed  Google Scholar 

  • Divecha N, Rhee SG, Letcher AJ et al (1993) Phosphoinositide signalling enzymes in rat liver nuclei: phosphoinositidase C isoform beta 1 is specifically, but not predominantly, located in the nucleus. Biochem J 289:617–620

    PubMed  CAS  Google Scholar 

  • Divecha N, Truong O, Hsuan JJ et al (1995) The cloning and sequence of the C isoform of PtdIns4P 5-kinase. Biochem J 309:715–719

    PubMed  CAS  Google Scholar 

  • Divecha N, Halstead JR (2004) Of yeast and men. The evolution of PtdIns(3,4,5)P(3) synthesis. EMBO Rep 5:865–866

    PubMed  CAS  Google Scholar 

  • Doerks T, Strauss M, Brendel M et al (2000) GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Trends Biochem Sci 25:483–485

    PubMed  CAS  Google Scholar 

  • Domin J, Harper L, Aubyn D et al (2005) The class II phosphoinositide 3-kinase PI3K-C2beta regulates cell migration by a PtdIns3P dependent mechanism. J Cell Physiol 205:452–462

    PubMed  CAS  Google Scholar 

  • Dominguez V, Raimondi C, Somanath S et al (2011) Class II phosphoinositide 3-kinase regulates exocytosis of insulin granules in pancreatic beta cells. J Biol Chem 286:4216–4225

    PubMed  CAS  Google Scholar 

  • Downward J (1998) Mechanisms and consequences of activation of protein kinase B/Akt. Curr Opin Cell Biol 10:262–267

    PubMed  CAS  Google Scholar 

  • Dove SK, Dong K, Kobayashi T et al (2009) Phosphatidylinositol 3,5-bisphosphate and Fab1p/PIKfyve underPPIn endo-lysosome function. Biochem J 419:1–13

    PubMed  CAS  Google Scholar 

  • Dowler S, Currie RA, Campbell DG et al (2000) Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem J 351:19–31

    PubMed  CAS  Google Scholar 

  • Ebato C, Uchida T, Arakawa M et al (2008) Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 8:325–332

    PubMed  CAS  Google Scholar 

  • Edling CE, Selvaggi F, Buus R et al (2010) Key role of phosphoinositide 3-kinase class IB in pancreatic cancer. Clin Cancer Res 16:4928–4937

    PubMed  CAS  Google Scholar 

  • Elis W, Triantafellow E, Wolters NM et al (2008) Down-regulation of class II phosphoinositide 3-kinase alpha expression below a critical threshold induces apoptotic cell death. Mol Cancer Res 6:614–623

    PubMed  CAS  Google Scholar 

  • Engelman JA, Luo J, Cantley LC (2006) The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism. Nat Rev Gen 7:606–619

    CAS  Google Scholar 

  • Faivre S, Kroemer G, Raymond E (2006) Current development of mTOR inhibitors as anticancer agents. Nat Rev Drug Discov 5:671–688

    PubMed  CAS  Google Scholar 

  • Falasca M (2010) PI3K/Akt signalling pathway specific inhibitors: a novel strategy to sensitize cancer cells to anti-cancer drugs. Curr Pharm Des 16:1410–1416

    PubMed  CAS  Google Scholar 

  • Falasca M, Logan SK, Lehto VP et al (1998) Activation of phospholipase C gamma by PI 3-kinase-induced PH domain-mediated membrane targeting. EMBO J 17:414–422

    PubMed  CAS  Google Scholar 

  • Falasca M, Maffucci T (2006) Emerging roles of phosphatidylinositol-3-monophosphate as a dynamic lipid second messenger. Arch Physiol Biochem 112:274–284

    PubMed  CAS  Google Scholar 

  • Falasca M, Maffucci T (2007) Role of class II phosphoinositide 3-kinase in cell signalling. Biochem Soc Trans 35:211–214

    PubMed  CAS  Google Scholar 

  • Falasca M, Maffucci T (2012) Regulation and cellular functions of class II phosphoinositide 3-kinases. Biochem J 443:587–601

    Google Scholar 

  • Falasca M, Hughes WE, Dominguez V et al (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signalling. J Biol Chem 282:28226–28236

    PubMed  CAS  Google Scholar 

  • Falasca M, Maffucci T (2009) Rethinking phosphatidylinositol 3-monophosphate. Biochim Biophys Acta 1793:1795–1803

    PubMed  CAS  Google Scholar 

  • Farese RV, Sajan MP (2010) Metabolic functions of atypical protein kinase C: “good” and “bad” as defined by nutritional status. Am J Physiol Endocrinol Metab 298:E385–E394

    PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878

    PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2010) PtdIns(3,5)P2 and autophagy in mouse models of neurodegeneration. Autophagy 6:170–171

    PubMed  Google Scholar 

  • Franke TF, Kaplan DR, Cantley LC (1997) PI3 K: downstream AKTion blocks apoptosis. Cell 88:435–437

    PubMed  CAS  Google Scholar 

  • Gewinner C, Wang ZC, Richardson A et al (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M et al (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    PubMed  CAS  Google Scholar 

  • Gills JJ, Holbeck S, Hollingshead M et al (2006) Spectrum of activity and molecular correlates of response to phosphatidylinositol ether lipid analogues, novel lipid-based inhibitors of Akt. Mol Cancer Ther 5:713–722

    PubMed  CAS  Google Scholar 

  • Gozani O, Karuman P, Jones DR et al (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    PubMed  CAS  Google Scholar 

  • Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22

    PubMed  CAS  Google Scholar 

  • Halstead JR, Roefs M, Ellson CD et al (2001) A novel pathway of cellular phosphatidylinositol(3,4,5)-trisphosphate synthesis is regulated by oxidative stress. Curr Biol 11:386–395

    PubMed  CAS  Google Scholar 

  • Halstead JR, Jalink K, Divecha N (2005) An emerging role for PtdIns(4,5)P2-mediated signalling in human disease. Trends Pharmacol Sci 26:654–660

    PubMed  CAS  Google Scholar 

  • Halstead JR, van Rheenen J, Snel MHJ et al (2006) A role for PtdIns(4,5)P2 and PIP5Kα in regulating stress-induced apoptosis. Curr Biol 16:1850–1856

    PubMed  CAS  Google Scholar 

  • Hamada K, Sasaki T, Koni PA et al (2005) The PTEN/PI3K pathway governs normal vascular development and tumor angiogenesis. Genes Dev 19:2054–2065

    PubMed  CAS  Google Scholar 

  • Hammond GR, Schiavo G (2007) Polyphosphoinositol lipids: under-PPInning synaptic function in health and disease. Develop Neurobiol 67:1232–1247

    CAS  Google Scholar 

  • Helgason CD, Damen JE, Rosten P et al (1998) Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12:1610–1620

    PubMed  CAS  Google Scholar 

  • Hennessy BT, Smith DL, Ram PT et al (2005) Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat Rev Drug Discov 4:988–1004

    PubMed  CAS  Google Scholar 

  • Hickey FB, Cotter TG (2006) BCR-ABL regulates phosphatidylinositol 3-kinase-p110gamma transcription and activation and is required for proliferation and drug resistance. J Biol Chem 281:2441–2450

    PubMed  CAS  Google Scholar 

  • Hodgson MC, Shao LJ, Frolov A et al (2011) Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res 71:572–582

    PubMed  CAS  Google Scholar 

  • Huang J, Manning BD (2009) A complex interplay between Akt, TSC2 and the two mTOR complexes. Biochem Soc Trans 37:217–222

    PubMed  CAS  Google Scholar 

  • Ijuin T, Yu YE, Mizutani K et al (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol 28:5184–5195

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Mlak K et al (2002) Requirement for PIKfyve enzymatic activity in acute and long-term insulin cellular effects. Endocrinology 143:4742–4754

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Dondapati R et al (2007) ArPIKfyve-PIKfyve interaction and role in insulin-regulated GLUT4 translocation and glucose transport in 3T3-L1 adipocytes. Exp Cell Res 313:2404–2416

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Ijuin T et al (2009a) Sac3 is an insulin-regulated phosphatidylinositol 3,5-bisphosphate phosphatase. J Biol Chem 284:23961–23971

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Shisheva A (2009b) YM201636, an inhibitor of retroviral budding and PIKfyve-catalyzed PtdIns(3,5)P2 synthesis, halts glucose entry by insulin in adipocytes. Biochem Biophys Res Commun 382:566–570

    PubMed  CAS  Google Scholar 

  • Ishiki M, Randhawa VK, Poon V et al (2005) Insulin regulates the membrane arrival, fusion, and C-terminal unmasking of glucose transporter-4 via distinct phosphoinositides. J Biol Chem 280:28792–28802

    PubMed  CAS  Google Scholar 

  • Ivetac I, Gurung R, Hakim S et al (2009) Regulation of PI(3)K/Akt signalling and cellular transformation by inositol polyphosphate 4-phosphatase-1. EMBO Rep 10:487–493

    PubMed  CAS  Google Scholar 

  • Jones DR, Bultsma Y, Keune WJ et al (2006) Nuclear PtdIns5P as a transducer of stress signaling: an in vivo role for PIP4Kbeta. Mol Cell 23:685–695

    PubMed  CAS  Google Scholar 

  • Jung HS, Chung KW, Won Kim J et al (2008) Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 8:318–324

    PubMed  CAS  Google Scholar 

  • Kanda H, Tamori Y, Shinoda H et al (2005) Adipocytes from Munc18c-null mice show increased sensitivity to insulin-stimulated GLUT4 externalization. J Clin Invest 115:291–301

    PubMed  CAS  Google Scholar 

  • Katso RM, Pardo OE, Palamidessi A et al (2006) Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. Mol Biol Cell 17:3729–3744

    PubMed  CAS  Google Scholar 

  • Kisseleva MV, Cao L, Majerus PW (2002) Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J Biol Chem 227:6266–6272

    Google Scholar 

  • Knobbe CB, Reifenberger G (2003) Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3’-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas. Brain Pathol 13:507–518

    PubMed  CAS  Google Scholar 

  • Knobbe CB, Lapin V, Suzuki A et al (2008) The roles of PTEN in development, physiology and tumorigenesis in mouse models: a tissue-by-tissue survey. Oncogene 27:5398–5415

    PubMed  CAS  Google Scholar 

  • Kok K, Geering B, Vanhaesebroeck B (2009) Regulation of phosphoinositide 3-kinase expression in health and disease. Trends Biochem Sci 34:115–127

    PubMed  CAS  Google Scholar 

  • Komander D, Fairservice A, Deak M et al (2004) Structural insights into the regulation of PDK1 by phosphoinositides and inositol phosphates. EMBO J 23:918–928

    Google Scholar 

  • Kondapaka SB, Singh SS, Dasmahapatra GP et al (2003) Perifosine, a novel alkylphospholipid, inhibits protein kinase B activation. Mol Cancer Ther 2:1093–1103

    PubMed  CAS  Google Scholar 

  • Kong AM, Horan KA, Sriratana A et al (2006) Phosphatidylinositol 3-phosphate [PtdIns3P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns3P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 26:6065–6081

    PubMed  CAS  Google Scholar 

  • Kozikowski AP, Sun H, Brognard J et al (2003) Novel PI analogues selectively block activation of the pro-survival serine/threonine kinase Akt. J Am Chem Soc 125:1144–1145

    PubMed  CAS  Google Scholar 

  • Kutateladze TG (2006) Phosphatidylinositol 3-phosphate recognition and membrane docking by the FYVE domain. Bioch Biophys Acta 1761:868–877

    CAS  Google Scholar 

  • Kutateladze TG (2007) Mechanistic similarities in docking of the FYVE and PX domains to phosphatidylinositol 3-phosphate containing membranes. Prog Lip Res 46:315–327

    CAS  Google Scholar 

  • Lecompte O, Poch O, Laporte J (2008) PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci 33:453–460

    PubMed  CAS  Google Scholar 

  • Leibiger B, Moede T, Uhles S et al (2010) Insulin-feedback via PI3K-C2α activated PKBFα/Akt1 is required for glucose-stimulated insulin secretion. FASEB J 24:1824–1837

    PubMed  CAS  Google Scholar 

  • Lemmon MA (2008) Membrane recognition by phospholipid-binding domains. Nat Rev Mol Cell Biol 9:99–111

    PubMed  CAS  Google Scholar 

  • Leslie NR, Maccario H, Spinelli L et al (2009) The significance of PTEN’s protein phosphatase activity. Adv Enzyme Regul 49:190–196

    PubMed  CAS  Google Scholar 

  • Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42

    PubMed  CAS  Google Scholar 

  • Li J, Lu Y, Zhang J et al (2010) PI4KIIα is a novel regulator of tumor growth by its action on angiogenesis and HIF-1α regulation. Oncogene 29:2550–2559

    PubMed  CAS  Google Scholar 

  • Liang J, Slingerland JM (2003) Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle 2:339–345

    PubMed  CAS  Google Scholar 

  • Liang K, Jin W, Knuefermann C et al (2003) Targeting the phosphatidylinositol 3-kinase/Akt pathway for enhancing breast cancer cells to radiotherapy. Mol Cancer Ther 2:353–360

    PubMed  CAS  Google Scholar 

  • Lindmo K, Stenmark H (2006) Regulation of membrane traffic by phosphoinositide 3-kinases. J Cell Sci 119:605–614

    PubMed  CAS  Google Scholar 

  • Liu P, Cheng H, Roberts TM et al (2009) Targeting the phosphoinositide 3-kinase pathway in cancer. Nat Rev Drug Discov 8:627–644

    PubMed  CAS  Google Scholar 

  • Lodhi IJ, Bridges D, Chiang SH et al (2008) Insulin stimulates phosphatidylinositol 3-phosphate production via the activation of Rab5. Mol Biol Cell 19:2718–2728

    PubMed  CAS  Google Scholar 

  • Logothetis DE, Petrou VI, Adney SK et al (2010) Channelopathies linked to plasma membrane phosphoinositides. Pflugers Arch 2010 Apr 16. [Epub ahead of print]

    Google Scholar 

  • Lowe M (2005) Structure and function of the Lowe syndrome protein OCRL1. Traffic 6:711–719

    PubMed  CAS  Google Scholar 

  • Luo J, Manning BD, Cantley LC (2003) Targeting the PI3 K-Akt pathway in human cancer: rationale and promise. Cancer Cell 4:257–262

    PubMed  CAS  Google Scholar 

  • Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10:307–318

    PubMed  Google Scholar 

  • Maehama T, Dixon JE (1999) PTEN: a tumour suppressor that functions as a phospholipid phosphatase. Trends Cell Biol 9:125–128

    PubMed  CAS  Google Scholar 

  • Maffucci T, Falasca M (2001) Specificity in pleckstrin homology (PH) domain membrane targeting: a role for a phosphoinositide-protein co-operative mechanism. FEBS Lett 506:173–179

    PubMed  CAS  Google Scholar 

  • Maffucci T, Brancaccio A, Piccolo E et al (2003a) Insulin induces phosphatidylinositol-3-phosphate formation through TC10 activation. EMBO J 22:4178–4189

    PubMed  CAS  Google Scholar 

  • Maffucci T, Razzini G, Ingrosso A et al (2003b) Role of pleckstrin homology domain in regulating membrane targeting and metabolic function of insulin receptor substrate 3. Mol Endocrinol 17:1568–1579

    PubMed  CAS  Google Scholar 

  • Maffucci T, Cooke FT, Foster FM et al (2005a) Class II phosphoinositide 3-kinase defines a novel signaling pathway in cell migration. J Cell Biol 169:789–799

    PubMed  CAS  Google Scholar 

  • Maffucci T, Piccolo E, Cumashi A et al (2005b) Inhibition of the phosphatidylinositol 3-kinase/Akt pathway by inositol pentakisphosphate results in antiangiogenic and antitumor effects. Cancer Res 65:8339–8349

    PubMed  CAS  Google Scholar 

  • Maffucci T, Raimondi C, Abu-Hayyeh S et al (2009) A phosphoinositide 3-kinase/phospholipase Cgamma1 pathway regulates fibroblast growth factor-induced capillary tube formation. PLoS ONE 4:e8285

    PubMed  Google Scholar 

  • Manning BD (2004) Balancing Akt with S6K: implications for both metabolic diseases and tumorigenesis. J Cell Biol 167:399–403

    PubMed  CAS  Google Scholar 

  • Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274

    PubMed  CAS  Google Scholar 

  • Marchetti P, Masini M (2009) Autophagy and the pancreatic beta-cell in human type 2 diabetes. Autophagy 5:1055–1056

    PubMed  CAS  Google Scholar 

  • Marion E, Kaisaki PJ, Pouillon V et al (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51:2012–2017

    PubMed  CAS  Google Scholar 

  • Marte BM, Downward J (1997) PKB/Akt: connecting phosphoinositide 3-kinase to cell survival and beyond. Trends Biochem Sci 22:355–358

    PubMed  CAS  Google Scholar 

  • Masini M, Bugliani M, Lupi R et al (2009) Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 52:1083–1086

    PubMed  CAS  Google Scholar 

  • Mavrommati I, Maffucci T (2011) mTOR inhibitors: facing new challenges ahead. Curr Med Chem 18:2743–2762

    PubMed  CAS  Google Scholar 

  • McCrea HJ, De Camilli P (2009) Mutations in phosphoinositide metabolizing enzymes and human disease. Physiology (Bethesda) 24:8–16

    CAS  Google Scholar 

  • McManus EJ, Collins BJ, Ashby PR, Prescott AR, Murray-Tait V, Armit LJ, Arthur JS, Alessi DR (2004) The in vivo role of PtdIns(3,4,5)P3 binding to PDK1 PH domain defined by knockin mutation. EMBO J 23:2071–2082

    PubMed  CAS  Google Scholar 

  • Merlot S, Meili R, Pagliarini DJ et al (2003) A PTEN-related 5-phosphatidylinositol phosphatase localized in the Golgi. J Biol Chem 278:39866–39873

    PubMed  CAS  Google Scholar 

  • Mejillano M, Yamamoto M, Rozelle AL et al (2001) Regulation of apoptosis by phosphatidylinositol 4,5-bisphosphate inhibition of caspases and caspase inactivation of phosphatidylinositol phosphate 5-kinase. J Biol Chem 276:1865–1872

    PubMed  CAS  Google Scholar 

  • Meunier FA, Osborne SL, Hammond GR et al (2005) Phosphatidylinositol 3-kinase C2alpha is essential for ATP-dependent priming of neurosecretory granule exocytosis. Mol Biol Cell 16:4841–4851

    PubMed  CAS  Google Scholar 

  • Michell RH (2008) Inositol derivatives: evolution and functions. Nat Rev Mol Cell Biol 9:151–161

    PubMed  CAS  Google Scholar 

  • Mima J, Wickner W (2009a) Phosphoinositides and SNARE chaperones synergistically assemble and remodel SNARE complexes for membrane fusion. Proc Natl Acad Sci U S A 106:16191–16196

    PubMed  CAS  Google Scholar 

  • Mima J, Wickner W (2009b) Complex lipid requirements for SNARE- and SNARE chaperone-dependent membrane fusion. J Biol Chem 284:27114–27122

    PubMed  CAS  Google Scholar 

  • Mitra P, Zhang Y, Rameh LE et al (2004) A novel phosphatidylinositol(3,4,5)P3 pathway in fission yeast. J Cell Biol 166:205–211

    PubMed  CAS  Google Scholar 

  • Morris JB, Hinchliffe KA, Ciruela A et al (2000) Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett 475:57–60

    PubMed  CAS  Google Scholar 

  • Narkis G, Ofir R, Landau D et al (2007) Lethal contractural syndrome type 3 (LCCS3) is caused by a mutation in PIP5K1C, which encodes PIPKI gamma of the phophatidylinsitol pathway. Am J Hum Genet 81:530–539

    PubMed  CAS  Google Scholar 

  • Nicot AS, Laporte J (2008) Endosomal phosphoinositides and human diseases. Traffic 9:1240–1249

    PubMed  CAS  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T et al (2002) Conversion of PtdIns(4,5)P(2) into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078

    PubMed  CAS  Google Scholar 

  • Nystuen A, Legare ME, Schultz LD et al (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212

    PubMed  CAS  Google Scholar 

  • Ooms LM, Horan KA, Rahman P et al (2009) The role of the inositol polyphosphate 5-phosphatases in cellular function and human disease. Biochem J 419:29–49

    PubMed  CAS  Google Scholar 

  • O’Reilly KE, Rojo F, She QB et al (2006) mTOR inhibition induces upstream receptor tyrosine kinase signaling and activates Akt. Cancer Res 66:1500–1508

    PubMed  Google Scholar 

  • Pagliarini DJ, Worby CA, Dixon JE (2004) A PTEN-like phosphatase with a novel substrate specificity. J Biol Chem 279:38590–38596

    PubMed  CAS  Google Scholar 

  • Pendaries C, Tronchère H, Arbibe L et al (2006) PtdIns5P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034

    PubMed  CAS  Google Scholar 

  • Piccolo E, Innominato PF, Mariggio MA et al (2002) The mechanism involved in the regulation of phospholipase Cgamma1 activity in cell migration. Oncogene 21:6520–6529

    PubMed  CAS  Google Scholar 

  • Piccolo E, Vignati S, Maffucci T et al (2004) Inositol pentakisphosphate promotes apoptosis through the PI 3-K/Akt pathway. Oncogene 23:1754–1765

    PubMed  CAS  Google Scholar 

  • Piñeiro R, Maffucci T, Falasca M (2011) The putative cannabinoid receptor GPR55 defines a novel autocrine loop in cancer cell proliferation. Oncogene 30:142–152

    PubMed  Google Scholar 

  • Podsypanina K, Ellenson LH, Nemes A et al (1999) Mutation of Pten/Mmaca in mice causes neoplasia in multiple organ systems. Proc Natl Acad Sci U S A 96:1563–1568

    PubMed  CAS  Google Scholar 

  • Proikas-Cezanne T, Ruckerbauer S, Stierhof YD et al (2007) Human WIPI-1 puncta-formation: a novel assay to assess mammalian autophagy. FEBS Lett 581:3396–3404

    PubMed  CAS  Google Scholar 

  • Razidlo GL, Katafiasz D, Taylor GS (2011) Myotubularin regulates Akt-dependent survival signaling via phosphatidylinositol 3-phosphate. J Biol Chem 286:20005–20019

    PubMed  CAS  Google Scholar 

  • Rameh LE, Tolias KF, Duckworth BC et al (1997) A new pathway for synthesis of phosphatidylinositol-4,5-bisphosphate. Nature 390:192–196

    PubMed  CAS  Google Scholar 

  • Ramel D, Lagarrigue F, Dupuis-Coronas S et al (2009) PtdIns5P protects Akt from dephosphorylation through PP2A inhibition. Biochem Biophys Res Commun 387:127–131

    PubMed  CAS  Google Scholar 

  • Razzini G, Berrie CP, Vignati S et al (2000) Novel functional PI 3-kinase antagonists inhibit cell growth and tumorigenicity in human cancer cell lines. FASEB J 14:1179–1187

    PubMed  CAS  Google Scholar 

  • Richardson JP, Wang M, Clarke JK et al (2007) Genomic tagging of endogenous type IIbeta phosphatidylinositol 5-phosphate 4-kinase in DT40 cells reveals a nuclear localization. Cell Signal 19:1309–1314

    PubMed  CAS  Google Scholar 

  • Roberts HF, Clarke JH, Letcher AJ et al (2005) Effects of lipid kinase expression and cellular stimuli on phosphatidylinositol 5-phosphate levels in mammalian cell lines. FEBS Lett 579:2868–2872

    PubMed  CAS  Google Scholar 

  • Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412

    PubMed  CAS  Google Scholar 

  • Rohde HM, Cheong FY, Konrad G et al (2003) The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278:52689–52699

    PubMed  CAS  Google Scholar 

  • Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289

    PubMed  CAS  Google Scholar 

  • Safi S, Vandromme M, Caussanel S et al (2004) Role for the pleckstrin homology domain-containing protein CKIP-1 in phosphatidylinositol 3-kinase-regulated muscle differentiation. Mol Cell Biol 24:1245–1255

    PubMed  CAS  Google Scholar 

  • Samuels Y, Wang Z, Bardelli A et al (2004) High frequency of mutations of the PIK3CA gene in human cancers. Science 304:554

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Ali SM, Sabatini DM (2005a) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17:596–603

    PubMed  CAS  Google Scholar 

  • Sarbassov DD, Guertin DA, Ali SM et al (2005b) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R et al (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276–47284

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J et al (2004) Role for a novel signaling intermediate, phosphatidylinositol 5-phosphate, in insulin-regulated F-actin stress fiber breakdown and GLUT4 translocation. Endocrinology 145:4853–4865

    PubMed  CAS  Google Scholar 

  • Shaw RJ, Cantley LC (2006) Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature 441:424–430

    PubMed  CAS  Google Scholar 

  • Shayesteh L, Lu Y, Kuo WL et al (1999) PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21:99–102

    PubMed  CAS  Google Scholar 

  • She QB, Solit D, Basso A et al (2003) Resistance to gefitinib in PTEN-null HER-overexpressing tumor cells can be overcome through restoration of PTEN function or pharmacologic modulation of constitutive phosphatidylinositol 3’-kinase/Akt pathway signaling. Clin Cancer Res 9:4340–4346

    PubMed  CAS  Google Scholar 

  • Shisheva A (2008a) Phosphoinositides in insulin action on GLUT4 dynamics: not just PtdIns(3,4,5)P3. Am J Physiol Endocrinol Metab 295:E536–E544

    PubMed  CAS  Google Scholar 

  • Shisheva A (2008b) PIKfyve: partners, significance, debates and paradoxes. Cell Biol Int 32:591–604

    PubMed  CAS  Google Scholar 

  • Sindić A, Aleksandrova A, Fields AP et al (2001) Presence and activation of nuclear phosphoinositide 3-kinase C2beta during compensatory liver growth. J Biol Chem 276:17754–17761

    PubMed  Google Scholar 

  • Sleeman MW, Wortley KE, Lai KM et al (2005) Absence of the lipid phosphatase SHIP2 confers resistance to diary obesity. Nat Med 11:199–205

    PubMed  CAS  Google Scholar 

  • Srivastava S, Li Z, Lin L et al (2005) The phosphatidylinositol 3-phosphate phosphatase myotubularin—related protein 6 (MTMR6) is a negative regulator of the Ca2+ -activated K+ channel KCa3.1. Mol Cell Biol 25:3630–3638

    PubMed  CAS  Google Scholar 

  • Srivastava S, Choudhury P, Li Z et al (2006a) Phosphatidylinositol 3-phosphate indirectly activates KCa3.1 via 14 amino acids in the carboxy terminus of KCa3.1. Mol Biol Cell 17:146–154

    PubMed  CAS  Google Scholar 

  • Srivastava S, Ko K, Choudhury P et al (2006b) Phosphatidylinositol-3 phosphatase myotubularin-related protein 6 negatively regulates CD4 T cells. Mol Cell Biol 26:5595–5602

    PubMed  CAS  Google Scholar 

  • Srivastava S, Di L, Zhdanova O et al (2009) The class II phosphatidylinositol 3 kinase C2beta is required for the activation of the K+ channel KCa3.1 and CD4 T-cells. Mol Biol Cell 20:3783–3791

    PubMed  CAS  Google Scholar 

  • Stenmark H, Aasland R (1999) FYVE-finger proteins—effectors of inositol lipid. J Cell Sci 112:4175–4183

    PubMed  CAS  Google Scholar 

  • Suzuki A, de la Pompa JL, Stambolic V et al (1998) High cancer susceptibility and embryonic lethality associated with mutation of the PTEN tumour suppressor gene in mice. Curr Biol 8:1169–1178

    PubMed  CAS  Google Scholar 

  • Taguchi-Atarashi N, Hamasaki M, Matsunaga K et al (2010) Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 11:468–478

    PubMed  CAS  Google Scholar 

  • Takeshita S, Namba N, Zhao JJ et al (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949

    PubMed  CAS  Google Scholar 

  • Tepass U (2009) FERM proteins in animal morphogenesis. Curr Opin Genet Dev 19:357–367

    PubMed  CAS  Google Scholar 

  • Tolias KF, Rameh LE, Ishihara H et al (1998) Type I phosphatidylinositol-4-phosphate 5-kinases synthesize the novel lipids phosphatidylinositol 3,5-bisphosphate and phosphatidylinositol 5-phosphate. J Biol Chem 273:18040–18046

    PubMed  CAS  Google Scholar 

  • Tronchere H, Laporte J, Pendaries C et al (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    PubMed  CAS  Google Scholar 

  • Tsujita K, Itoh T, Ijuin T et al (2004) Myotubularin regulates the function of the late endosome through the GRAM domain-phosphatidylinositol 3, 5-bisphosphate interaction. J Biol Chem 279:13817–13824

    PubMed  CAS  Google Scholar 

  • Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402

    PubMed  CAS  Google Scholar 

  • Ungewickell A, Hugge C, Kisseleva M et al (2005) The identification and characterization of two phosphatidylinositol-4, 5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A 102:18854–18859

    PubMed  CAS  Google Scholar 

  • van den Bout I, Divecha N (2009) PIP5K-driven PtdIns(4,5)P 2 synthesis: regulation and cellular functions. J Cell Sci 122:3837–3850

    PubMed  Google Scholar 

  • Vanhaesebroeck B, Leevers SJ, Ahmadi K et al (2001) Synthesis and function of 3-phosphorylated inositol lipids. Annu Rev Biochem 70:535–602

    PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Ali K, Bilancio A et al (2005) Signalling by PI3K isoforms: insights from gene-targeted mice. Trends Biochem Sci 30:194–204

    PubMed  CAS  Google Scholar 

  • Vanhaesebroeck B, Guillermet-Guibert J, Graupera M et al (2010) The emerging mechanisms of isoform-specific PI3K signalling. Nat Rev Mol Cell Biol 11:329–341

    PubMed  CAS  Google Scholar 

  • van Rossum DB, Patterson RL, Sharma S et al (2005) Phospholipase Cgamma1 controls surface expression of TRPC3 through an intermolecular PH domain. Nature 434:99–104

    PubMed  Google Scholar 

  • Vasudevan KM, Barbie DA, Davies MA et al (2009) AKT-independent signaling downstream of oncogenic PIK3CA mutations in human cancer. Cancer Cell 16:21–32

    PubMed  CAS  Google Scholar 

  • Vergne I, Roberts E, Elmaoued RA et al (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J 28:2244–2258

    PubMed  CAS  Google Scholar 

  • Visnjić D, Crljen V, Curić J et al (2002) The activation of nuclear phosphoinositide 3-kinase C2beta in all-trans-retinoic acid-differentiated HL-60 cells. FEBS Lett 529:268–274

    PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat Rev Cancer 2:489–501

    PubMed  CAS  Google Scholar 

  • Vogt PK, Kang S, Elsliger MA et al (2007) Cancer-specific mutations in phosphatidylinositol 3-kinase. Trends Biochem Sci 32:342–349

    PubMed  CAS  Google Scholar 

  • Watt SA, Kimber WA, Fleming IN et al (2004) Detection of novel intracellular agonist responsive pools of phosphatidylinositol 3, 4-bisphosphate using the TAPP1 pleckstrin homology domain in immunoelectron microscopy. Biochem J 377:653–663

    PubMed  CAS  Google Scholar 

  • Wen PJ, Osborne SL, Morrow IC et al (2008) Ca2+ -regulated pool of phosphatidylinositol-3-phosphate produced by phosphatidylinositol 3-kinase C2alpha on neurosecretory vesicles. Mol Biol Cell 12:5593–5603

    Google Scholar 

  • Wilcox A, Hinchliffe KA (2008) Regulation of extranuclear PtdIns5P production by phosphatidylinositol phosphate 4-kinase 2α. FEBS Lett 582:1391–1394

    PubMed  CAS  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    PubMed  CAS  Google Scholar 

  • Xue Y, Fares H, Grant B et al (2003) Genetic analysis of the myotubularin family of phosphatases in Caenorhabditis elegans. J Biol Chem 278:34380–34386

    PubMed  CAS  Google Scholar 

  • Yamashita S, Oku M, Wasada Y et al (2006) PI4P-signaling pathway for the synthesis of a nascent membrane structure in selective autophagy. J Cell Biol 173:709–717

    PubMed  CAS  Google Scholar 

  • Zhang H, Bajraszewski N, Wu E et al (2007) PDGFRs are critical for PI3K/Akt activation and negatively regulated by mTOR. J Clin Invest 117:730–738

    CAS  Google Scholar 

  • Zhao L, Vogt PK (2008) Class I PI3K in oncogenic cellular transformation. Oncogene 27:5486–5496

    PubMed  CAS  Google Scholar 

  • Zoncu R, Perera RM, Balkin DM et al (2009) A phosphoinositide switch controls the maturation and signaling properties of APPL endosomes. Cell 136:1110–1121

    PubMed  CAS  Google Scholar 

  • Zou J, Marjanovic J, Kisseleva MV et al (2007) Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis Proc Natl Acad Sci U S A 104:16834–16839

    Google Scholar 

  • Zou J, Chang SC, Marjanovic J et al (2009) MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis. J Biol Chem 284:2064–2071

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I would like to thank Diabetes UK, Diabetes Research & Wellness Foundation and Barts and The London Charity for their support. I thank Prof Marco Falasca for introducing me to the “PIs’ world”, for our long, useful discussions on PIs and for critical reading of this manuscript. I also thank Dr Andrew Riley for the structure of the different PIs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tania Maffucci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Maffucci, T. (2012). An Introduction to Phosphoinositides. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_1

Download citation

Publish with us

Policies and ethics