Advertisement

Applications and Implications of Fractional Dynamics for Dielectric Relaxation

Conference paper
  • 1.2k Downloads
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

This article summarizes briefly the presentation given by the author at the NATO Advanced Research Workshop on “Broadband Dielectric Spectroscopy and its Advanced Technological Applications”, held in Perpignan, France, in September 2011. The purpose of the invited presentation at the workshop was to review and summarize the basic theory of fractional dynamics (Hilfer, Phys Rev E 48:2466, 1993; Hilfer and Anton, Phys Rev E Rapid Commun 51:R848, 1995; Hilfer, Fractals 3(1):211, 1995; Hilfer, Chaos Solitons Fractals 5:1475, 1995; Hilfer, Fractals 3:549, 1995; Hilfer, Physica A 221:89, 1995; Hilfer, On fractional diffusion and its relation with continuous time random walks. In: Pekalski et al. (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77, 1999; Hilfer, Fractional evolution equations and irreversibility. In: Helbing et al. (eds) Traffic and granular flow’99. Springer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003; Hilfer, Physica A 329:35, 2003; Hilfer, Threefold introduction to fractional derivatives. In: Klages et al. (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17–74, 2008; Hilfer, Foundations of fractional dynamics: a short account. In: Klafter et al. (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207, 2011) and demonstrate its relevance and application to broadband dielectric spectroscopy (Hilfer, J Phys Condens Matter 14:2297, 2002; Hilfer, Chem Phys 284:399, 2002; Hilfer, Fractals 11:251, 2003; Hilfer et al., Fractional Calc Appl Anal 12:299, 2009). It was argued, that broadband dielectric spectroscopy might be useful to test effective field theories based on fractional dynamics.

Keywords

Fractional Derivative Fractional Calculus Fractional Dynamic Propylene Carbonate Relaxation Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The author gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft.

References

  1. 1.
    Brand R, Lunkenheimer P, Schneider U, Loidl A (1999) Is there an excess wing in the dielectric loss of plastic crystals? Phys Rev Lett 82:1951CrossRefADSGoogle Scholar
  2. 2.
    Brand R, Lunkenheimer P, Schneider U, Loidl A (2000) Excess wing in the dielectric loss of glass-forming ethanol: a relaxation process. Phys Rev B 62:8878CrossRefADSGoogle Scholar
  3. 3.
    Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. J Chem Phys 9:341CrossRefADSGoogle Scholar
  4. 4.
    Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417CrossRefADSGoogle Scholar
  5. 5.
    Fox C (1961) The G and H functions as symmetrical Fourier kernels. Trans Am Math Soc 98:395zbMATHGoogle Scholar
  6. 6.
    Fröhlich H (1949) Theory of dielectrics: dielectric constant and dielectric loss. Oxford University Press, LondonGoogle Scholar
  7. 7.
    Hilfer R (1993) Classification theory for anequilibrium phase transitions. Phys Rev E 48:2466MathSciNetCrossRefADSGoogle Scholar
  8. 8.
    Hilfer R (1995) Exact solutions for a class of fractal time random walks. Fractals 3(1):211MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Hilfer R (1995) An extension of the dynamical foundation for the statistical equilibrium concept. Physica A 221:89MathSciNetCrossRefADSGoogle Scholar
  10. 10.
    Hilfer R (1995) Foundations of fractional dynamics. Fractals 3:549MathSciNetzbMATHGoogle Scholar
  11. 11.
    Hilfer R (1995) Fractional dynamics, irreversibility and ergodicity breaking. Chaos Solitons Fractals 5:1475MathSciNetzbMATHCrossRefADSGoogle Scholar
  12. 12.
    Hilfer R (1999) On fractional diffusion and its relation with continuous time random walks. In: Pekalski A, Kutner R, Sznajd-Weron K (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77CrossRefGoogle Scholar
  13. 13.
    Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, SingaporezbMATHCrossRefGoogle Scholar
  14. 14.
    Hilfer R (2000) Fractional evolution equations and irreversibility. In: Helbing D, Herrmann H, Schreckenberg M, Wolf D (eds) Traffic and granular flow’99. Springer, Berlin, p 215CrossRefGoogle Scholar
  15. 15.
    Hilfer R (2000) Fractional time evolution. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87CrossRefGoogle Scholar
  16. 16.
    Hilfer R (2002) Experimental evidence for fractional time evolution in glass forming materials. Chem Phys 284:399CrossRefADSGoogle Scholar
  17. 17.
    Hilfer R (2002) Fitting the excess wing in the dielectric α-relaxation of propylene carbonate. J Phys Condens Matter 14:2297CrossRefADSGoogle Scholar
  18. 18.
    Hilfer R (2002) H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys Rev E 65:061510CrossRefADSGoogle Scholar
  19. 19.
    Hilfer R (2003) On fractional diffusion and continuous time random walks. Physica A 329:35MathSciNetzbMATHCrossRefADSGoogle Scholar
  20. 20.
    Hilfer R (2003) On fractional relaxation. Fractals 11:251MathSciNetzbMATHGoogle Scholar
  21. 21.
    Hilfer R (2003) Remarks on fractional time. In: Castell L, Ischebeck O (eds) Time, quantum and information. Springer, Berlin, p 235Google Scholar
  22. 22.
    Hilfer R (2008) Threefold introduction to fractional derivatives. In: Klages R, Radons G, Sokolov I (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17–74Google Scholar
  23. 23.
    Hilfer R (2011) Foundations of fractional dynamics: a short account. In: Klafter J, Lim S, Metzler R (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207Google Scholar
  24. 24.
    Hilfer R, Anton L (1995) Fractional master equations and fractal time random walks. Phys Rev E Rapid Commun 51:R848ADSGoogle Scholar
  25. 25.
    Hilfer R, Luchko Y, Tomovski Z (2009) Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fractional Calc Appl Anal 12:299MathSciNetzbMATHGoogle Scholar
  26. 26.
    Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann Phys 167:56CrossRefGoogle Scholar
  27. 27.
    Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann Phys 167:179CrossRefGoogle Scholar
  28. 28.
    Kremer F, Schönhals A (eds) (2003) Broad band dielectric spectroscopy. Springer, BerlinGoogle Scholar
  29. 29.
    Lebowitz J (1999) Statistical mechanics: a selective review of two central issues. Rev Mod Phys 71:S346CrossRefGoogle Scholar
  30. 30.
    Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemp Phys 41:15CrossRefADSGoogle Scholar
  31. 31.
    Mittag-Leffler G (1902) Sur l’integrale de Laplace-Abel. C R Acad Sci Paris 135:123Google Scholar
  32. 32.
    Prudnikov AP, Brychkov YuA, Marichev OI (1990) Integrals and series, vol 3. Gordon and Breach, New YorkzbMATHGoogle Scholar
  33. 33.
    Richert R, Blumen A (eds) (1994) Disorder effects on relaxational processes. Springer, BerlinGoogle Scholar
  34. 34.
    Schneider U, Lunkenheimer P, Brand R, Loidl A (1999) Broadband dielectric spectoscopy on glass-forming propylene carbonate. Phys Rev E 59:6924CrossRefADSGoogle Scholar
  35. 35.
    Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.ICP, Fakultät für Mathematik und PhysikUniversität StuttgartStuttgartGermany
  2. 2.Institut für PhysikUniversität MainzMainzGermany

Personalised recommendations