Skip to main content

Applications and Implications of Fractional Dynamics for Dielectric Relaxation

  • Conference paper
  • First Online:
Recent Advances in Broadband Dielectric Spectroscopy
  • 1353 Accesses

Abstract

This article summarizes briefly the presentation given by the author at the NATO Advanced Research Workshop on “Broadband Dielectric Spectroscopy and its Advanced Technological Applications”, held in Perpignan, France, in September 2011. The purpose of the invited presentation at the workshop was to review and summarize the basic theory of fractional dynamics (Hilfer, Phys Rev E 48:2466, 1993; Hilfer and Anton, Phys Rev E Rapid Commun 51:R848, 1995; Hilfer, Fractals 3(1):211, 1995; Hilfer, Chaos Solitons Fractals 5:1475, 1995; Hilfer, Fractals 3:549, 1995; Hilfer, Physica A 221:89, 1995; Hilfer, On fractional diffusion and its relation with continuous time random walks. In: Pekalski et al. (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77, 1999; Hilfer, Fractional evolution equations and irreversibility. In: Helbing et al. (eds) Traffic and granular flow’99. Springer, Berlin, p 215, 2000; Hilfer, Fractional time evolution. In: Hilfer (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87, 2000; Hilfer, Remarks on fractional time. In: Castell and Ischebeck (eds) Time, quantum and information. Springer, Berlin, p 235, 2003; Hilfer, Physica A 329:35, 2003; Hilfer, Threefold introduction to fractional derivatives. In: Klages et al. (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17–74, 2008; Hilfer, Foundations of fractional dynamics: a short account. In: Klafter et al. (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207, 2011) and demonstrate its relevance and application to broadband dielectric spectroscopy (Hilfer, J Phys Condens Matter 14:2297, 2002; Hilfer, Chem Phys 284:399, 2002; Hilfer, Fractals 11:251, 2003; Hilfer et al., Fractional Calc Appl Anal 12:299, 2009). It was argued, that broadband dielectric spectroscopy might be useful to test effective field theories based on fractional dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brand R, Lunkenheimer P, Schneider U, Loidl A (1999) Is there an excess wing in the dielectric loss of plastic crystals? Phys Rev Lett 82:1951

    Article  ADS  Google Scholar 

  2. Brand R, Lunkenheimer P, Schneider U, Loidl A (2000) Excess wing in the dielectric loss of glass-forming ethanol: a relaxation process. Phys Rev B 62:8878

    Article  ADS  Google Scholar 

  3. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics. J Chem Phys 9:341

    Article  ADS  Google Scholar 

  4. Davidson DW, Cole RH (1950) Dielectric relaxation in glycerine. J Chem Phys 18:1417

    Article  ADS  Google Scholar 

  5. Fox C (1961) The G and H functions as symmetrical Fourier kernels. Trans Am Math Soc 98:395

    MATH  Google Scholar 

  6. Fröhlich H (1949) Theory of dielectrics: dielectric constant and dielectric loss. Oxford University Press, London

    Google Scholar 

  7. Hilfer R (1993) Classification theory for anequilibrium phase transitions. Phys Rev E 48:2466

    Article  MathSciNet  ADS  Google Scholar 

  8. Hilfer R (1995) Exact solutions for a class of fractal time random walks. Fractals 3(1):211

    Article  MathSciNet  MATH  Google Scholar 

  9. Hilfer R (1995) An extension of the dynamical foundation for the statistical equilibrium concept. Physica A 221:89

    Article  MathSciNet  ADS  Google Scholar 

  10. Hilfer R (1995) Foundations of fractional dynamics. Fractals 3:549

    MathSciNet  MATH  Google Scholar 

  11. Hilfer R (1995) Fractional dynamics, irreversibility and ergodicity breaking. Chaos Solitons Fractals 5:1475

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Hilfer R (1999) On fractional diffusion and its relation with continuous time random walks. In: Pekalski A, Kutner R, Sznajd-Weron K (eds) Anomalous diffusion: from basis to applications. Springer, Berlin, p 77

    Chapter  Google Scholar 

  13. Hilfer R (2000) Applications of fractional calculus in physics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  14. Hilfer R (2000) Fractional evolution equations and irreversibility. In: Helbing D, Herrmann H, Schreckenberg M, Wolf D (eds) Traffic and granular flow’99. Springer, Berlin, p 215

    Chapter  Google Scholar 

  15. Hilfer R (2000) Fractional time evolution. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, p 87

    Chapter  Google Scholar 

  16. Hilfer R (2002) Experimental evidence for fractional time evolution in glass forming materials. Chem Phys 284:399

    Article  ADS  Google Scholar 

  17. Hilfer R (2002) Fitting the excess wing in the dielectric α-relaxation of propylene carbonate. J Phys Condens Matter 14:2297

    Article  ADS  Google Scholar 

  18. Hilfer R (2002) H-function representations for stretched exponential relaxation and non-Debye susceptibilities in glassy systems. Phys Rev E 65:061510

    Article  ADS  Google Scholar 

  19. Hilfer R (2003) On fractional diffusion and continuous time random walks. Physica A 329:35

    Article  MathSciNet  MATH  ADS  Google Scholar 

  20. Hilfer R (2003) On fractional relaxation. Fractals 11:251

    MathSciNet  MATH  Google Scholar 

  21. Hilfer R (2003) Remarks on fractional time. In: Castell L, Ischebeck O (eds) Time, quantum and information. Springer, Berlin, p 235

    Google Scholar 

  22. Hilfer R (2008) Threefold introduction to fractional derivatives. In: Klages R, Radons G, Sokolov I (eds) Anomalous transport: foundations and applications. Wiley-VCH, Weinheim, pp 17–74

    Google Scholar 

  23. Hilfer R (2011) Foundations of fractional dynamics: a short account. In: Klafter J, Lim S, Metzler R (eds) Fractional dynamics: recent advances. World Scientific, Singapore, p 207

    Google Scholar 

  24. Hilfer R, Anton L (1995) Fractional master equations and fractal time random walks. Phys Rev E Rapid Commun 51:R848

    ADS  Google Scholar 

  25. Hilfer R, Luchko Y, Tomovski Z (2009) Operational method for the solution of fractional differential equations with generalized Riemann-Liouville fractional derivatives. Fractional Calc Appl Anal 12:299

    MathSciNet  MATH  Google Scholar 

  26. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann Phys 167:56

    Article  Google Scholar 

  27. Kohlrausch R (1854) Theorie des elektrischen Rückstandes in der Leidener Flasche. Ann Phys 167:179

    Article  Google Scholar 

  28. Kremer F, Schönhals A (eds) (2003) Broad band dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  29. Lebowitz J (1999) Statistical mechanics: a selective review of two central issues. Rev Mod Phys 71:S346

    Article  Google Scholar 

  30. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemp Phys 41:15

    Article  ADS  Google Scholar 

  31. Mittag-Leffler G (1902) Sur l’integrale de Laplace-Abel. C R Acad Sci Paris 135:123

    Google Scholar 

  32. Prudnikov AP, Brychkov YuA, Marichev OI (1990) Integrals and series, vol 3. Gordon and Breach, New York

    MATH  Google Scholar 

  33. Richert R, Blumen A (eds) (1994) Disorder effects on relaxational processes. Springer, Berlin

    Google Scholar 

  34. Schneider U, Lunkenheimer P, Brand R, Loidl A (1999) Broadband dielectric spectoscopy on glass-forming propylene carbonate. Phys Rev E 59:6924

    Article  ADS  Google Scholar 

  35. Williams G, Watts DC (1970) Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans Faraday Soc 66:80

    Article  Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges financial support from the Deutsche Forschungsgemeinschaft.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hilfer, R. (2013). Applications and Implications of Fractional Dynamics for Dielectric Relaxation. In: Kalmykov, Y. (eds) Recent Advances in Broadband Dielectric Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5012-8_9

Download citation

Publish with us

Policies and ethics