Skip to main content

Complex Dielectric Permittivity of Metal-Containing Nanocomposites: Non-phenomenological Description

  • Conference paper
  • First Online:
Recent Advances in Broadband Dielectric Spectroscopy

Abstract

Addition of metal nanoparticles radically alters the complex dielectric permittivity of a matrix-insulator. A non-phenomenological theory describing these changes is developed by assuming that a large concentration of electron traps with the critical binding energy in the amorphous matrix exists. Such traps in the vicinity of the nanoparticles can be partially occupied by the electrons. The trapped electron with its neighbor nanoparticle then represents an appreciable dipole moment. Reorientations of this moment in the external electric field occurs due to electron jumps between the traps over a sphere surrounding a nanoparticle. The calculation of the interaction of the dipole moment with an external field is carried out taking into account the dielectric permittivity of the matrix. By deriving and solving the equation for the dipole relaxation function, the real and imaginary parts of the permittivity may be evaluated. The calculated dependences of the dielectric permittivity on frequency and temperature agree qualitatively with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cook M, Watts DC, Williams G (1970) Correlation function approach to the dielectric behaviour of amorphous polymers. Trans Faraday Soc 66:2503–2511

    Article  Google Scholar 

  2. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics 1. Alternating current characteristics. J Chem Phys 9:341–351

    Article  ADS  Google Scholar 

  3. Davidson DW, Cole RH (1951) Dielectric relaxation in Glycerol, Propylene Glycol, and n-Propanol. J Chem Phys 19:1484–1490

    Article  ADS  Google Scholar 

  4. Debye P (1929) Polar molecules. Dovar Publications, New York

    MATH  Google Scholar 

  5. Havriliak S, Negami S (1966) A complex plane analysis of alpha-dispersions in some polymer systems. J Polym Sci 14:99–116, Part C

    Google Scholar 

  6. Feldman Yu, Puzenko A, Ya Ryabov (2006) Dielectric relaxation phenomena in complex materials. In: Kalmykov YP, Coffey WT, Rice SR (eds) Special volume of advances in chemical physics, vol 133, part A. Wiley, Hoboken, pp 1–125

    Google Scholar 

  7. Fröhlich H (1958) Theory of dielectrics, 2nd edn. Clarendon, Oxford

    MATH  Google Scholar 

  8. Goldanskii VI, Trakhtenberg LI, Fleurov VN (1989) Tunneling phenomena in chemical physics. Gordon and Breach Science Publications, New York

    Google Scholar 

  9. Grigoriev EI, Trakhtenberg LI (1996) Radiation chemical processes in the solid phase. CRC Press, New York, London, Tokyo

    Google Scholar 

  10. Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Yu (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58:237–254

    Article  Google Scholar 

  11. Landau LD, Lifshitz EM (1980) Statistical physics, vol 5, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  12. Landau LD, Lifshitz EM, Pitaevskii LP (1984) Electrodynamics of continuous media, vol 8, 2nd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  13. Macalik B, Suszynska M, Rysiakiewicz-Pasek E et al (2005) Spectroscopic and dielectric characteristics of nickel-doped porous silica glasses. Opt Appl 35:761–767

    Google Scholar 

  14. McCrum NG, Read BE, Williams G (1991) Inelastic and dielectric effects in polymeric solids. Dower, New York

    Google Scholar 

  15. Morse PM, Feshbach H (1953) Methods of theoretical physics, part 1. McGrow-Hill, New York

    Google Scholar 

  16. Mott NF, Davis EA (1971) Electronic processes in non-crystalline materials. Clarendon, Oxford

    Google Scholar 

  17. Nagaev EL (1992) Small metallic particles. Adv Phys 162:49–124

    Google Scholar 

  18. Nicolais L, Carotenuto G (eds) (2005) Metal/polymer nanocomposites. John Wiley & Sons, New York

    Google Scholar 

  19. Pitaevskii LP, Lifshitz EM (1981) Physical kinetics, vol 10. Pergamon Press, Oxford

    Google Scholar 

  20. Pomogailo AD, Rozenberg AS, Uflyand IYe (2000) Nanoparticles of metals in polymers. Chemistry, Moscow

    Google Scholar 

  21. Trakhtenberg LI, Axelrod E, Gerasimov GN, Nikolaeva EV, Smirnova EI (2002) New nano-composite metal-polymer materials: dielectric behaviour. J Non-Cryst Solids 305:190–196

    Article  ADS  Google Scholar 

  22. Trakhtenberg LI, Lin SH, Ilegbusi OJ (eds) (2007) Physico-chemical phenomena in thin films and at solid surfaces. Elsevier Inc., Amsterdam

    Google Scholar 

  23. Trakhtenberg LI, Kozhushner MA, Gerasimov GN, Gromov VF, Bodneva VL, Antropova TA, Axelrod E, Greenbaum (Gutina) A, Feldman Yu (2010) Non-phenomenological description of complex dielectric permittivity of metal-containing porous glasses. J Non-Cryst Solids 356:642–646

    Article  ADS  Google Scholar 

  24. Williams G (1997) Theory of dielectric properties. In: Punt JP, Fitzgerald JJ (eds) Dielectric spectroscopy of polymeric materials. American Chemical Society, Washington, DC, pp 3–65

    Google Scholar 

Download references

Acknowledgments

We thank Prof. Yu. Feldman and Drs. V.L. Bodneva and A. Greenbaum (Gutina) for many helpful discussions and support in the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid I. Trakhtenberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Kozhushner, M.A., Trakhtenberg, L.I. (2013). Complex Dielectric Permittivity of Metal-Containing Nanocomposites: Non-phenomenological Description. In: Kalmykov, Y. (eds) Recent Advances in Broadband Dielectric Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5012-8_4

Download citation

Publish with us

Policies and ethics