Skip to main content

Anomalous Diffusion, Cole-Cole Relaxation and the Space in Which They Occur: Puzzles and Problems

  • Conference paper
  • First Online:
Book cover Recent Advances in Broadband Dielectric Spectroscopy

Abstract

The origin of the Cole-Cole dielectric spectral equation is investigated by considering its attendant susceptibility as originating in the Laplace transform of the fractional Fokker-Planck equation. The eigenvalues of the solution point to the interaction of the dipole with its local molecular conditions, as dictated by the local fields involved, as the origin of the spectral broadening (described by the parameter α). This view is compared to ideas in the literature pointing to a dipole-matrix interaction as the cause of spectral broadening. The question is posed concerning what information exists in the as yet unexplored element of the CC function, namely the dielectric strength, Δε. In this context a new derivation of Fröhlich’s B(T) function is proposed, that relies on fully accessible experimental values only and is capable of unifying all parameters of the Cole-Cole function via the calculated correlation between dipoles. This function is demonstrated via an electron hopping process, exhibiting Cole-Cole dielectric behavior, observed in a ferroelectric KTN crystal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burns G, Dacol FH (1982) Polarization in the cubic phase of BaTIO3. Solid State Commun 42(1):9–12. doi:10.1016/0038-1098(82)91018-3

    Article  ADS  Google Scholar 

  2. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9(4):341. doi:10.1063/1.1750906

    Google Scholar 

  3. Feldman Y, Puzenko A, Ryabov Y (2002) Non-Debye dielectric relaxation in complex materials. Chem Phys 284(1–2):139–168. doi:10.1016/S0301-0104(02)00545-1

    Article  ADS  Google Scholar 

  4. Fröhlich, H. (1987). Theory of dielectrics: dielectric constant and dielectric loss, 2nd edn. Oxford University Press, New York.

    Google Scholar 

  5. Girshberg Y, Yacoby Y (2012) Off-center displacements and hydrostatic pressure induced phase transition in perovskites. J Phys Condens Matter 24(1) doi:10.1088/0953-8984/24/1/015901

    Google Scholar 

  6. Hilfer R (2000) Fractional diffusion based on Riemann-Liouville fractional derivatives†. J Phys Chem B 104(16):3914–3917. doi:10.1021/jp9936289

    Article  Google Scholar 

  7. Lerner SE, Feldman Y, Ben Ishai P Dielectric relaxation in weakly ergodic dilute dipole systems. Phys Rev B, Submitted

    Google Scholar 

  8. Lerner SE, Ben Ishai P, Agranat AJ, Feldman Y (2007) Percolation of polar nanoregions: a dynamic approach to the ferroelectric phase transition. J Non-Cryst Solids 353(47–51):4422–4427. doi:10.1016/j.jnoncrysol.2007.02.075

    Article  ADS  Google Scholar 

  9. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77. doi:10.1016/S0370-1573(00)00070-3

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Pusey PN, Van Megen W (1989) Dynamic light scattering by non-ergodic media. Phys A Stat Mech Appl 157(2):705–741. doi:10.1016/0378-4371(89)90063-0

    Article  Google Scholar 

  11. Puzenko A, Ben Ishai P, Feldman Y (2010) Cole-cole broadening in dielectric relaxation and strange kinetics. Phys Rev Lett 105(3):037601. doi:10.1103/PhysRevLett.105.037601

    Article  ADS  Google Scholar 

  12. Ryabov Y, Gutina A, Arkhipov V, Feldman Y (2001) Dielectric relaxation of water absorbed in porous glass. J Phys Chem B 105(9):1845–1850. doi:10.1021/jp0033061

    Article  Google Scholar 

  13. Ryabov YE, Feldman Y, Shinyashiki N, Yagihara S (2002) The symmetric broadening of the water relaxation peak in polymer–water mixtures and its relationship to the hydrophilic and hydrophobic properties of polymers. J Chem Phys 116(19):8610. doi:10.1063/1.1471551

    Article  ADS  Google Scholar 

  14. Yelon A, Movaghar B, Branz HM (1992) Origin and consequences of the compensation (Meyer-Neldel) law. Phys Rev B 46(19):12244. doi:10.1103/PhysRevB.46.12244

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Prof. Aharon J. Agranat for providing the crystal analyzed in the study and for helpful discussions. The authors would also like to thank Prof. Marian Paluch for providing the pressure measurements which proved to be a vital ingredient for confirming the theory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Ben Ishai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Ishai, P.B., Lerner, S., Puzenko, A.A., Feldman, Y. (2013). Anomalous Diffusion, Cole-Cole Relaxation and the Space in Which They Occur: Puzzles and Problems. In: Kalmykov, Y. (eds) Recent Advances in Broadband Dielectric Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5012-8_3

Download citation

Publish with us

Policies and ethics