Skip to main content

Fractional Klein-Kramers Equations: Subdiffusive and Superdiffusive Cases

  • Conference paper
  • First Online:
Book cover Recent Advances in Broadband Dielectric Spectroscopy

Abstract

Brownian diffusion processes in phase space are described by the Klein-Kramers equation governing the time evolution of the probability density W(x, v, t) to find the test particle with velocity v at position x at time t. We here summarise generalisations of this equation to anomalous diffusion processes. These fractional Klein-Kramers equations describe either subdiffusive or superdiffusive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Here and in the following we denote the Laplace transform of a function through the explicit dependence on the Laplace variable, i.e.,

    $$f(u) = \mathcal{L}\{f(t)\} ={ \int \nolimits \nolimits }_{0}^{\infty }f(t)\exp (-ut)dt.$$

References

  1. Barkai E, Cheng YC (2003) Ageing continuous time random walks. J Chem Phys 118:6167–6178

    Article  ADS  Google Scholar 

  2. Barkai E, Silbey R (2000) Fractional Kramers equation. J Phys Chem B 104: 3866–3874

    Article  Google Scholar 

  3. Barkai E, Metzler R, Klafter J (2000) From continuous time random walks to the fractional Fokker-Planck equation. Phys Rev E 61:132–138

    Article  MathSciNet  ADS  Google Scholar 

  4. Bel G, Barkai E (2005) Weak ergodicity breaking in the continuous time random walk. Phys Rev Lett 94:240602

    Article  ADS  Google Scholar 

  5. Bouchaud J-P (1992) Weak ergodicity breaking and aging in disordered-systems. J Phys. I (Paris) 2:1705–1713

    Google Scholar 

  6. Bouchaud J-P, Georges A (1990) Anomalous diffusion in disordered media—statistical mechanisms, models and physical applications. Phys Rep 195:127–293

    Article  MathSciNet  ADS  Google Scholar 

  7. Burov S, Metzler R, Barkai E (2010) Aging and non-ergodicity beyond the Khinchin theorem. Proc Natl Acad Sci USA 107:13228–13233

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Burov S, Jeon J-H, Metzler R, Barkai E (2011) Single particle tracking in systems showing anomalous diffusion: the role of weak ergodicity breaking. Phys Chem Chem Phys 13:1800–1812

    Article  Google Scholar 

  9. Chandrasekhar S (1943) Stochastic problems in physics and astronomy. Rev Mod Phys 15:1–89

    Article  MathSciNet  MATH  ADS  Google Scholar 

  10. Coffey WT, Kalmykov YuP, Waldron JT (2004) The Langevin equation. World Scientific, Singapore

    MATH  Google Scholar 

  11. Compte A, Metzler R (1997) The generalised Cattaneo equation for the description of anomalous transport processes. J Phys A 30:7277–7289

    Article  MathSciNet  MATH  ADS  Google Scholar 

  12. Davies RW (1954) The connection between the Smoluchowski equation and the Kramers-Chandrasekhar equation. Phys Rev 93:1169–1170

    Article  MATH  ADS  Google Scholar 

  13. Einstein A (1905) The motion of elements suspended in static liquids as claimed in the molecular kinetic theory of heat. Ann Phys 17:549–560

    Article  MATH  Google Scholar 

  14. Einstein A (1906) The theory of the Brownian Motion. Ann Phys 19:371–381

    Article  MATH  Google Scholar 

  15. Fogedby HC (1994) Langevin equations for continuous time Lévy flights. Phys Rev E 50:1657–1660

    Article  ADS  Google Scholar 

  16. He Y, Burov S, Metzler R, Barkai E (2008) Random time-scale invariant diffusion and transport coefficients. Phys Rev Lett 101:058101

    Article  ADS  Google Scholar 

  17. Jeon J-H, Metzler R (2010) Analysis of short subdiffusive time series: scatter of the time averaged mean squared displacement. J Phys A 43:252001

    Article  MathSciNet  ADS  Google Scholar 

  18. Jeon J-H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L, Metzler R (2011) In vivo anomalous diffusion and weak ergodicity breaking of lipid granules. Phys Rev Lett 106:048103

    Article  ADS  Google Scholar 

  19. Jespersen S, Metzler R, Fogedby HC (1999) Lévy flights in external force fields: Langevin and fractional Fokker-Planck equations and their solutions. Phys Rev E 59:2736–2745

    Article  ADS  Google Scholar 

  20. Klafter J, Sokolov IM (2011) First steps in random walks: from tools to applications. Oxford University Press, Oxford

    MATH  Google Scholar 

  21. Klein O (1921) Arkiv för Matematik, Astronomi och Fysik 16(5)

    Google Scholar 

  22. Kramers HA (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7:284–304

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Langevin P (1908) The theory of brownian movement. Comptes Rendues 146:530–533

    MATH  Google Scholar 

  24. Lubelski A, Sokolov IM, Klafter J (2008) Nonergodicity mimics inhomogeneity in single particle tracking. Phys Rev Lett 100:250602

    Article  ADS  Google Scholar 

  25. Metzler R, Compte A (1999) Stochastic foundation of normal and anomalous Cattaneo-type transport. Physica A 268:454–468

    Article  Google Scholar 

  26. Metzler R, Nonnenmacher TF (1998) Fractional diffusion, waiting time distributions, and Cattaneo-type equations. Phys Rev E 57:6409–6414

    Article  MathSciNet  ADS  Google Scholar 

  27. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339:1–77

    Article  MathSciNet  MATH  ADS  Google Scholar 

  28. Metzler R, Klafter J (2000) Accelerating Brownian motion: a fractional dynamics approach to fast diffusion. Europhys Lett 51:492–498

    Article  ADS  Google Scholar 

  29. Metzler R, Klafter J (2000) From a generalized Chapman-Kolmogorov equation to the fractional Klein-Kramers equation. J Phys Chem B 104:3851–3857

    Article  Google Scholar 

  30. Metzler R, Klafter J (2000) Subdiffusive transport close to thermal equilibrium: from the Langevin equation to fractional diffusion. Phys Rev E 61:6308–6311

    Article  MathSciNet  ADS  Google Scholar 

  31. Metzler R, Sokolov IM (2002) Superdiffusive Klein-Kramers equation: normal and anomalous time evolution and Lévy walk moments. Europhys Lett 58:482–488

    Article  ADS  Google Scholar 

  32. Metzler R, Klafter J (2004) The restaurant at the end of the random walk: recent developments in fractional dynamics descriptions of anomalous dynamical processes. J Phys A 37:R161–R208

    Article  MathSciNet  MATH  ADS  Google Scholar 

  33. Metzler R, Barkai E, Klafter J (1999) Anomalous diffusion and relaxation close to thermal equilibrium: a fractional Fokker-Planck equation approach. Phys Rev Lett 82:3563–3567

    Article  ADS  Google Scholar 

  34. Metzler R, Barkai E, Klafter J (1999) Anomalous transport in disordered systems under the influence of external fields. Physica A 266: 343–350

    Article  Google Scholar 

  35. Metzler R, Barkai E, Klafter J (1999) Deriving fractional Fokker-Planck equations from a generalised master equation. Europhys Lett 46:431–436

    Article  MathSciNet  ADS  Google Scholar 

  36. Metzler R, Tejedor V, Jeon J-H, He Y, Deng W, Burov S, Barkai E (2009) Analysis of single particle trajectories: from normal to anomalous diffusion. Acta Phys. Polonica B 40:1315–1331

    ADS  Google Scholar 

  37. Monthus C, Bouchaud J-P (1996) Models of traps and glass phenomenology. J Phys A 29:3847–3869

    Article  MATH  ADS  Google Scholar 

  38. Neusius T, Sokolov IM, Smith JC (2009) Subdiffusion in time-averaged, confined random walks. Phys Rev E 80:011109

    Article  ADS  Google Scholar 

  39. Rebenshtok A, Barkai E (2008) Weakly non-ergodic statistical physics. J Stat Phys 133:565-

    Google Scholar 

  40. Risken H (1989) The Fokker-Planck equation. Springer, Berlin

    Book  MATH  Google Scholar 

  41. Sokolov IM, Heinsalu E, Hänggi P, Goychuk I (2009) Universal fluctuations in subdiffusive transport. EPL 86:30009

    Google Scholar 

  42. Solomon TH, Weeks ER, Swinney HL (1993) Observation of anomalous diffusion and Lévy flights in a two-dimensional rotating flow. Phys Rev Lett 71:3975–3978

    Article  ADS  Google Scholar 

  43. van Kampen NG (1981) Stochastic processes in physics and chemistry. North-Holland, Amsterdam

    MATH  Google Scholar 

  44. von Smoluchowski M (1906) Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann Phys 21:756–780

    Article  MATH  Google Scholar 

  45. Weigel AV, Simon B, Tamkun MM, Krapf D (2011) Ergodic and nonergodic processes coexist in the plasma membrane as observed by single-molecule tracking. Proc Natl Acad Sci USA 108:6438–6443

    Article  ADS  Google Scholar 

  46. West BJ, Grigolini P, Metzler R, Nonnenmacher TF (1997) Fractional diffusion and Lévy stable processes. Phys Rev E 55:99–106 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  47. Zaslavsky GM (2005) Hamiltonian chaos and fractional dynamics. Oxford University Press, Oxford

    MATH  Google Scholar 

Download references

Acknowledgements

Funding from the Academy of Finland within the FiDiPro scheme is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Metzler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Metzler, R. (2013). Fractional Klein-Kramers Equations: Subdiffusive and Superdiffusive Cases. In: Kalmykov, Y. (eds) Recent Advances in Broadband Dielectric Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5012-8_13

Download citation

Publish with us

Policies and ethics