Advertisement

Molecular Dynamics of Polymers at Nanometric Length Scales: From Thin Layers to Isolated Coils

Conference paper
Part of the NATO Science for Peace and Security Series B: Physics and Biophysics book series (NAPSB)

Abstract

The (dynamic) glass transition of polymers in nanometer thin layers is both a prevailing but as well a highly controversial topic. In the current review the literature for the most studied case of polystyrene (as freestanding films or as deposited and suspended layers) will be discussed. Based on this, the extraordinary impact of sample preparation is immediately evident and outlined in detail. Recent results are presented on nanometric thin (≥5 nm) layers of polystyrene (PS) having widely varying molecular weights and polymethylmethacrylate (PMMA) deposited on different substrates. For the dielectric measurements two sample geometries are employed: the conventional technique using evaporated electrodes and a recently developed approach taking advantage of silica nanostructures as spacers. All applied methods deliver the concurring result that deviations from glassy dynamics and from the glass transition of the bulk never exceed margins of ±3 K independent of the layer thickness, the molecular weight of the polymer under study and the underlying substrate. Novel experiments are described on thin layers of polyisoprene, a type A polymer, having relaxation processes on two different length scales, the segmental and the normal mode. A further exciting perspective is the measurement of the dynamics of isolated polymer coils, for which first results will be presented.

Keywords

Polymer Coil Segmental Mode Silica Nanostructures Single Polymer Chain Broadband Dielectric Spectroscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Keddie J, Jones R, Cory R (1994) Size-dependent depression of the glass transition temperature in polymer films. Europhys Lett 27:59ADSCrossRefGoogle Scholar
  2. 2.
    Xie F, Zhang HF, Lee FK, Du B, Tsui OKC (2002) Effect of low surface energy chain ends on the glass transition temperature of polymer thin films. Macromolecules 35:1491–1492ADSCrossRefGoogle Scholar
  3. 3.
    Forrest JA, Dalnoki-Veress K, Stevens JR, Dutcher JR (1996) Effect of free surfaces on the glass transition temperature of thin polymer films. Phys Rev Lett 77:2002ADSCrossRefGoogle Scholar
  4. 4.
    DeMaggio G, Frieze W, Gidley D, Zhu M, Hristov HA, Yee AF (1997) Interface and surface effects on the glass transition in thin polystyrene films. Phys Rev Lett 78:1524ADSCrossRefGoogle Scholar
  5. 5.
    Forrest JA, Dalnoki-Veress K, Dutcher JR (1997) Interface and chain confinement effects on the glass transition temperature of thin polymer films. Phys Rev E 56:5705ADSCrossRefGoogle Scholar
  6. 6.
    Jean YC, Zhang R, Cao H, Yuan J-P, Huang C-M, Nielsen B, Asoka-Kumar P (1997) Glass transition of polystyrene near the surface studied by slow-positron-annihilation spectroscopy. Phys Rev B 56:R8459–R8462ADSCrossRefGoogle Scholar
  7. 7.
    Fukao K, Miyamoto Y (1999) Glass transition temperature and dynamics of α-process in thin polymer films. Europhys Lett 46:649ADSCrossRefGoogle Scholar
  8. 8.
    Forrest JA, Mattsson J (2000) Reductions of the glass transition temperature in thin polymer films: probing the length scale of cooperative dynamics. Phys Rev E 61:R53–R56ADSCrossRefGoogle Scholar
  9. 9.
    Fryer D, Nealey P, Pablo J (2000) Thermal probe measurements of the glass transition temperature for ultrathin polymer films as a function of thickness. Macromolecules 33:6439ADSCrossRefGoogle Scholar
  10. 10.
    Fukao K, Miyamoto Y (2000) Glass transitions and dynamics in thin polymer films: dielectric relaxation of thin films of polystyrene. Phys Rev E 61:1743ADSCrossRefGoogle Scholar
  11. 11.
    Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85:2340ADSCrossRefGoogle Scholar
  12. 12.
    Mattson J, Forrest J, Börjesson L (2000) Quantifying glass transition behavior in ultrathin free-standing polymer films. Phys Rev E 62:5187ADSCrossRefGoogle Scholar
  13. 13.
    Zhao J-H, Kiene M, Hu C, Ho PS (2000) Thermal stress and glass transition of ultrathin polystyrene films. Appl Phys Lett 77:2843–2845ADSCrossRefGoogle Scholar
  14. 14.
    Dalnoki-Veress K, Forrest J, Murray C, Gigault C, Dutcher J (2001) Molecular weight dependence of reductions in the glass transition temperature of thin, freely standing polymer films. Phys Rev E 63:031801ADSCrossRefGoogle Scholar
  15. 15.
    Fryer DS, Peters RD, Kim EJ, Tomaszewski JE, de Pablo JJ, Nealey PF, White CC, Wu W-l (2001) Dependence of the glass transition temperature of polymer films on interfacial energy and thickness. Macromolecules 34:5627–5634ADSCrossRefGoogle Scholar
  16. 16.
    Fukao K, Miyamoto Y (2001) Slow dynamics near glass transitions in thin polymer films. Phys Rev E 64:011803ADSCrossRefGoogle Scholar
  17. 17.
    Kawana S, Jones R (2001) Character of the glass transition in thin supported polymer films. Phys Rev E 63:021501ADSCrossRefGoogle Scholar
  18. 18.
    Tate RS, Fryer DS, Pasqualini S, Montague MF, de Pablo JJ, Nealey PF (2001) Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J Chem Phys 115:9982–9990ADSCrossRefGoogle Scholar
  19. 19.
    Tsui OKC, Russell TP, Hawker CJ (2001) Effect of interfacial interactions on the glass transition of polymer thin films. Macromolecules 34:5535–5539ADSCrossRefGoogle Scholar
  20. 20.
    Tsui OKC, Zhang HF (2001) Effects of chain ends and chain entanglement on the glass transition temperature of polymer thin films. Macromolecules 34:9139–9142ADSCrossRefGoogle Scholar
  21. 21.
    Ellison CJ, Torkelson JM (2002) Sensing the glass transition in thin and ultrathin polymer films via fluorescence probes and labels. J Polym Sci, Part B: Polym Phys 40:2745–2758ADSCrossRefGoogle Scholar
  22. 22.
    Ellison C, Kim S, Hall D, Torkelson J (2002) Confinement and processing effects on glass transition temperature and physical aging in ultrathin polymer films: novel fluorescence measurements. Eur Phys J E 8:155CrossRefGoogle Scholar
  23. 23.
    Fukao K, Uno S, Miyamoto Y, Hoshino A, Miyaji H (2002) Relaxation dynamics in thin supported polymer films. J Non-Cryst Solids 307–310:517–523CrossRefGoogle Scholar
  24. 24.
    Ellison C, Torkelson J (2003) The distribution of glass-transition temperatures in nanoscopically confined glass formers. Nat Mater 2:695ADSCrossRefGoogle Scholar
  25. 25.
    Efremov M, Olson E, Zhang M, Zhang Z, Allen L (2003) Glass transition in ultrathin polymer films: calorimetric study. Phys Rev Lett 91:085703ADSCrossRefGoogle Scholar
  26. 26.
    Kanaya T, Miyazaki T, Watanabe H, Nishida K, Yamano H, Tasaki S, Bucknall D (2003) Annealing effects on thickness of polystyrene thin films as studied by neutron reflectivity. Polymer 44:3769–3773CrossRefGoogle Scholar
  27. 27.
    Sharp JS, Forrest JA (2003) Free surfaces cause reductions in the glass transition temperature of thin polystyrene films. Phys Rev Lett 91:235701ADSCrossRefGoogle Scholar
  28. 28.
    D’Amour JN, Okoroanyanwu U, Frank CW (2004) Influence of substrate chemistry on the properties of ultrathin polymer films. Microelectron Eng 73–74:209–217CrossRefGoogle Scholar
  29. 29.
    Ellison CJ, Ruszkowski RL, Fredin NJ, Torkelson JM (2004) Dramatic reduction of the effect of nanoconfinement on the glass transition of polymer films via addition of small-molecule diluent. Phys Rev Lett 92:095702ADSCrossRefGoogle Scholar
  30. 30.
    Efremov M, Olson E, Zhang M, Zhang Z, Allen L (2004) Probing glass transition of ultrathin polymer films at a time scale of seconds using fast differential scanning calorimetry. Macromolecules 37:4607ADSCrossRefGoogle Scholar
  31. 31.
    Fakhraai Z, Sharp JS, Forrest JA (2004) Effect of sample preparation on the glass-transition of thin polystyrene films. J Polym Sci, Part B: Polym Phys 42:4503–4507ADSCrossRefGoogle Scholar
  32. 32.
    Miyazaki T, Nishida K, Kanaya T (2004) Thermal expansion behavior of ultrathin polymer films supported on silicon substrate. Phys Rev E 69:061803ADSCrossRefGoogle Scholar
  33. 33.
    Singh L, Ludovice PJ, Henderson CL (2004) Influence of molecular weight and film thickness on the glass transition temperature and coefficient of thermal expansion of supported ultrathin polymer films. Thin Solid Films 449:231–241ADSCrossRefGoogle Scholar
  34. 34.
    Ellison CJ, Mundra MK, Torkelson JM (2005) Impacts of polystyrene molecular weight and modification to the repeat unit structure on the glass transition-nanoconfinement effect and the cooperativity length scale. Macromolecules 38:1767–1778ADSCrossRefGoogle Scholar
  35. 35.
    Fakhraai Z, Forrest J (2005) Probing slow dynamics in supported thin polymer films. Phys Rev Lett 95:025701ADSCrossRefGoogle Scholar
  36. 36.
    Lupaşcu V, Huth H, Schick C, Wübbenhorst M (2005) Specific heat and dielectric relaxations in ultra-thin polystyrene layers. Thermochim Acta 432:222CrossRefGoogle Scholar
  37. 37.
    Huth H, Minakov A, Schick C (2006) Differential AC-chip calorimeter for glass transition measurements in ultrathin films. J Polym Sci, Part B: Polym Phys 44:2996ADSCrossRefGoogle Scholar
  38. 38.
    Inoue R, Kanaya T, Miyazaki T, Nishida K, Tsukushi I, Shibata K (2006) Glass transition and thermal expansivity of polystyrene thin films. Mater Sci Eng A 442:367CrossRefGoogle Scholar
  39. 39.
    Koh Y, McKenna G, Simon S (2006) Calorimetric glass transition temperature and absolute heat capacity of polystyrene ultrathin films. J Polym Sci, Part B: Polym Phys 44:3518ADSCrossRefGoogle Scholar
  40. 40.
    Lupaşcu V, Picken SJ, Wübbenhorst M (2006) Cooperative and non-cooperative dynamics in ultra-thin films of polystyrene studied by dielectric spectroscopy and capacitive dilatometry. J Non-Cryst Solids 352:5594–5600ADSCrossRefGoogle Scholar
  41. 41.
    Mundra MK, Ellison CJ, Behling RE, Torkelson JM (2006) Confinement, composition, and spin-coating effects on the glass transition and stress relaxation of thin films of polystyrene and styrene-containing random copolymers: sensing by intrinsic fluorescence. Polymer 47:7747–7759CrossRefGoogle Scholar
  42. 42.
    O’Connell P, McKenna G (2006) Dramatic stiffening of ultrathin polymer films in the rubbery regime. Eur Phys J E 20:143–150CrossRefGoogle Scholar
  43. 43.
    Akabori K-I, Tanaka K, Takahara A, Kajiyama T, Nagamura T (2007) Substrate effect on mechanical relaxation of polystyrene in ultrathin films. Eur Phys J Spec Top 141:173–180CrossRefGoogle Scholar
  44. 44.
    Bodiguel H, Fretigny C (2007) Viscoelastic properties of ultrathin polystyrene films. Macromolecules 40:7291–7298ADSCrossRefGoogle Scholar
  45. 45.
    Cheng W, Sainidou R, Burgardt P, Stefanou N, Kiyanova A, Efremov M, Fytas G, Nealey P (2007) Elastic properties and glass transition of supported polymer thin films. Macromolecules 40:7283ADSCrossRefGoogle Scholar
  46. 46.
    Huth H, Minakov A, Serghei A, Kremer F, Schick C (2007) Differential AC-chip calorimeter for glass transition measurements in ultra thin polymeric films. Eur Phys J Spec Top 141:153CrossRefGoogle Scholar
  47. 47.
    Miyazaki T, Inoue R, Nishida K, Kanaya T (2007) X-ray reflectivity studies on glass transition of free standing polystyrene thin films. Eur Phys J Spec Top 141:203–206CrossRefGoogle Scholar
  48. 48.
    Mundra M, Ellison C, Rittigstein P, Torkelson J (2007) Fluorescence studies of confinement in polymer films and nanocomposites: glass transition temperature, plasticizer effects, and sensitivity to stress relaxation and local polarity. Eur Phys J Spec Top 141:143CrossRefGoogle Scholar
  49. 49.
    Napolitano S, Wübbenhorst M (2007) Dielectric signature of a dead layer in ultrathin films of a nonpolar polymer. J Phys Chem 111:9197CrossRefGoogle Scholar
  50. 50.
    Priestley R, Broadbelt L, Torkelson J, Fukao K (2007) Glass transition and α-relaxation dynamics of thin films of labeled polystyrene. Phys Rev E 75:061806ADSCrossRefGoogle Scholar
  51. 51.
    Svanberg C (2007) Glass transition relaxations in thin suspended polymer films. Macromolecules 40:312–315ADSCrossRefGoogle Scholar
  52. 52.
    Kim S, Roth C, Torkelson J (2008) Effect of nanoscale confinement on the glass transition temperature of free-standing polymer films: novel, self-referencing fluorescence method. J Polym Sci, Part B: Polym Phys 46:2754ADSCrossRefGoogle Scholar
  53. 53.
    Koh YP, Simon SL (2008) Structural relaxation of stacked ultrathin polystyrene films. J Polym Sci, Part B: Polym Phys 46:2741–2753ADSCrossRefGoogle Scholar
  54. 54.
    O’Connell PA, Hutcheson SA, McKenna GB (2008) Creep behavior of ultra-thin polymer films. J Polym Sci, Part B: Polym Phys 46:1952–1965ADSCrossRefGoogle Scholar
  55. 55.
    Raegen A, Massa M, Forrest J, Dalnoki-Veress K (2008) Effect of atmosphere on reductions in the glass transition of thin polystyrene Films. Eur Phys J E 27:375CrossRefGoogle Scholar
  56. 56.
    Serghei A, Huth H, Schick C, Kremer F (2008) Glassy dynamics in thin polymer layers having a free upper interface. Macromolecules 41:3636ADSCrossRefGoogle Scholar
  57. 57.
    Bernazzani P, Sanchez R (2009) Structural and thermal behavior of polystyrene thin films using ATR–FTIR–NanoDSC measurements. J Therm Anal Calorim 96:727CrossRefGoogle Scholar
  58. 58.
    Inoue R, Kanaya T, Nishida K, Tsukushi I, Telling MTF, Gabrys BJ, Tyagi M, Soles C, Wu W-I (2009) Glass transition and molecular mobility in polymer thin films. Phys Rev E 80:031802ADSCrossRefGoogle Scholar
  59. 59.
    Kanaya T, Inoue R, Kawashima K, Miyazaki T, Tsukushi I, Shibata K, Matsuba G, Nishida K, Hino M (2009) Glassy dynamics and heterogeneity of polymer thin films. J Phys Soc Jpn 78:041004ADSCrossRefGoogle Scholar
  60. 60.
    Kim S, Hewlett S, Roth C, Torkelson J (2009) Confinement effects on glass transition temperature, transition breadth, and expansivity: comparison of ellipsometry and fluorescence measurements on polystyrene films. Eur Phys J E 30:83CrossRefGoogle Scholar
  61. 61.
    Lu H, Chen W, Russell TP (2009) Relaxation of thin films of polystyrene floating on ionic liquid surface. Macromolecules 42:9111–9117ADSCrossRefGoogle Scholar
  62. 62.
    Rotella C, Napolitano S, Wübbenhorst M (2009) Segmental mobility and glass transition temperature of freely suspended ultrathin polymer membranes. Macromolecules 42:1415ADSCrossRefGoogle Scholar
  63. 63.
    Mapesa E, Erber M, Tress M, Eichhorn K-J, Serghei A, Voit B, Kremer F (2010) Glassy dynamics in nanometer thin layers of polystyrene. Eur Phys J Spec Top 189:173CrossRefGoogle Scholar
  64. 64.
    Napolitano S, Wübbenhorst M (2010) Structural relaxation and dynamic fragility of freely standing polymer films. Polymer 51:5309–5312Google Scholar
  65. 65.
    Rotella C, Napolitano S, Cremer LD, Koeckelberghs G, Wübbenhorst M (2010) Distribution of segmental mobility in ultrathin polymer films. Macromolecules 43:8686–8691ADSCrossRefGoogle Scholar
  66. 66.
    Tress M, Erber M, Mapesa E, Huth H, Müller J, Serghei A, Schick C, Eichhorn K-J, Voit B, Kremer F (2010) Glassy dynamics and glass transition in nanometric thin layers of polystyrene. Macromolecules 43:9937–9944ADSCrossRefGoogle Scholar
  67. 67.
    Clough A, Peng D, Yang Z, Tsui OKC (2011) Glass transition temperature of polymer films that slip. Macromolecules 44:1649–1653ADSCrossRefGoogle Scholar
  68. 68.
    Dinelli F, Ricci A, Sgrilli T, Baschieri P, Pingue P, Puttaswamy M, Kingshott P (2011) Nanoscale viscoelastic behavior of the surface of thick polystyrene films as a function of temperature. Macromolecules 44:987–992ADSCrossRefGoogle Scholar
  69. 69.
    Fukao K, Terasawa T, Oda Y, Nakamura K, Tahara D (2011) Glass transition dynamics of stacked thin polymer films. Phys Rev E 84:041808ADSCrossRefGoogle Scholar
  70. 70.
    Glynos E, Frieberg B, Oh H, Liu M, Gidley DW, Green PF (2011) Role of molecular architecture on the vitrification of polymer thin films. Phys Rev Lett 106:128301ADSCrossRefGoogle Scholar
  71. 71.
    Inoue R, Kawashima K, Matsui K, Kanaya T, Nishida K, Matsuba G, Hino M (2011) Distributions of glass-transition temperature and thermal expansivity in multilayered polystyrene thin films studied by neutron reflectivity. Phys Rev E 83:021801ADSCrossRefGoogle Scholar
  72. 72.
    Inoue R, Kawashima K, Matsui K, Nakamura M, Nishida K, Kanaya T, Yamada NL (2011) Interfacial properties of polystyrene thin films as revealed by neutron reflectivity. Phys Rev E 84:031802ADSCrossRefGoogle Scholar
  73. 73.
    Kim S, Torkelson JM (2011) Distribution of glass transition temperatures in free-standing, nanoconfined polystyrene films: a test of de Gennes’ sliding motion mechanism. Macromolecules 44:4546–4553ADSCrossRefGoogle Scholar
  74. 74.
    Napolitano S, Rotella C, Wübbenhorst M (2011) Is the reduction in tracer diffusivity under nanoscopic confinement related to a frustrated segmental mobility? Macromol Rapid Commun 32:844–848CrossRefGoogle Scholar
  75. 75.
    Napolitano S, Wübbenhorst M (2011) The lifetime of the deviations from bulk behaviour in polymers confined at the nanoscale. Nat Commun 2:260CrossRefGoogle Scholar
  76. 76.
    Paeng K, Swallen SF, Ediger MD (2011) Direct measurement of molecular motion in freestanding polystyrene thin films. J Am Chem Soc 133:8444–8447CrossRefGoogle Scholar
  77. 77.
    Paeng K, Ediger MD (2011) Molecular motion in free-standing thin films of poly(methyl methacrylate), poly(4-tert-butylstyrene), poly(α-methylstyrene), and poly(2-vinylpyridine). Macromolecules 44:7034–7042ADSCrossRefGoogle Scholar
  78. 78.
    García-Turiel J, Jérôme B (2007) Solvent retention in thin polymer films studied by gas chromatography. Colloid Polym Sci 285:1617–1623CrossRefGoogle Scholar
  79. 79.
    Perlich J, Körstgens V, Metwalli E, Schulz L, Georgii R, Müller-Buschbaum P (2009) Solvent content in thin spin-coated polystyrene homopolymer films. Macromolecules 42:337ADSCrossRefGoogle Scholar
  80. 80.
    Serghei A, Kremer F (2008) Metastable states of glassy dynamics, possibly mimicking confinement-effects in thin polymer films. Macromol Chem Phys 209:810CrossRefGoogle Scholar
  81. 81.
    Serghei A, Huth H, Schellenberger M, Schick C, Kremer F (2005) Pattern formation in thin polystyrene films induced by an enhanced mobility in ambient air. Phys Rev E 71:061801ADSCrossRefGoogle Scholar
  82. 82.
    Labahn D, Mix R, Schönhals A (2009) Dielectric relaxation of ultrathin films of supported polysulfone. Phys Rev E 79:011801ADSCrossRefGoogle Scholar
  83. 83.
    Wübbenhorst M, Murray C, Dutcher J (2003) Dielectric relaxations in ultrathin isotactic PMMA films and PS-PMMA-PS trilayer films. Eur Phys J E 12:S109CrossRefGoogle Scholar
  84. 84.
    Serghei A, Kremer F (2008) Broadband dielectric studies on the interfacial dynamics enabled by use of nanostructured electrodes. Rev Sci Instrum 79:026101ADSCrossRefGoogle Scholar
  85. 85.
    Serghei A, Tress M, Kremer F (2006) Confinement effects on the relaxation time distribution of the dynamic glass transition in ultrathin polymer films. Macromolecules 39:9385ADSCrossRefGoogle Scholar
  86. 86.
    Serghei A, Tress M, Kremer F (2009) The glass transition of thin polymer films in relation to the interfacial dynamics. J Chem Phys 131:154904ADSCrossRefGoogle Scholar
  87. 87.
    Erber M, Tress M, Mapesa E, Serghei A, Eichhorn K-J, Voit B, Kremer F (2010) Glassy dynamics and glass transition in thin polymer layers of PMMA deposited on different substrates. Macromolecules 43:7729ADSCrossRefGoogle Scholar
  88. 88.
    Kremer F, Huwe A, Arndt M, Behrens P, Schwieger W (1999) How many molecules form a liquid? J Phys Condens Matter 11:A175ADSCrossRefGoogle Scholar
  89. 89.
    Stockmayer W (1967) Dielectric dispersion in solutions of flexible polymers. Pure Appl Chem 15:539CrossRefGoogle Scholar
  90. 90.
    Bahar I, Erman B, Kremer F, Fischer E (1992) Segmental motions of cis-polyisoprene in the bulk state: interpretation of dielectric relaxation data. Macromolecules 25:816ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute of Experimental Physics IUniversity of LeipzigLeipzigGermany
  2. 2.Max Planck Institute of Microstructure PhysicsHalle (Saale)Germany

Personalised recommendations