Skip to main content

Recursive Dynamics for Floating-Base Systems

  • Chapter
  • First Online:
  • 2402 Accesses

Part of the book series: Intelligent Systems, Control and Automation: Science and Engineering ((ISCA,volume 62))

Abstract

Robotic systems studied in Chap. 6 have their bases fixed, however, in reality many robotic systems have their bases mobile or floating. In the case of a fixed-base robotic system, the base does not influence the dynamics, whereas it significantly influences the dynamics in the case of a floating-base robotic system. Space manipulators and legged robots are examples of floating-base robotic systems. Legged robots find applications in maintenance task of industrial plants, operations in dangerous and emergency environments, surveillance, maneuvering unknown terrains, human care, terrain adaptive vehicles and many more. In the case of legged robots they are either classified based on the number of legs, e.g., biped, quadruped, hexapod, etc., or the way it balances, e.g., statically or dynamically balanced. As reviewed in Chap. 2, legged robots (1) have variable topology, (2) move with high joint accelerations, (3) are dynamically not balanced if Center-of-Mass (COM) moves out of the polygon formed by the support feet, and (4) are under actuated. Hence, objective of achieving stable motion is difficult to decompose into actuator commands. Therefore, control of legged robots is intricate and dynamics plays vital role in achieving stable motion.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Balafoutis, C. A., & Patel, R. V. (1991). Dynamic analysis of robot manipulators: A Cartesian tensor approach. Boston: Kluwer Academic.

    Book  MATH  Google Scholar 

  • Baraff, D. (1994). Fast contact force computation for nonpenetrating rigid bodies. In Proceedings of SIGGRAPH, Orlando, FL.

    Google Scholar 

  • Bhangale, P. P., Saha, S. K., & Agrawal, V. P. (2004). A dynamic model based robot arm selection criterion. International Journal of Multibody System Dynamics, 12(2), 95–115.

    Article  MathSciNet  MATH  Google Scholar 

  • Bogert, A. J., Schamhardt, H. C., & Crowe, A. (1989). Simulation of quadrupedal locomotion using a rigid body model. Journal of Biomechanics, 22(1), 33–41.

    Article  Google Scholar 

  • Buehler, M., Cocosco, A., Yamazaki, K., & Battaglia, R. (1999). Stable open loop walking in quadruped robots with stick legs. IEEE international conference on robotics and automation (pp. 2348–2353).

    Google Scholar 

  • Collins, S. H., & Ruina, A. (2005). A Bipedal walking robot with efficient sand human-like gait. IEEE international conference on robotics and automation (pp. 1983–1988).

    Google Scholar 

  • Doi, T., Hodoshima, R., Hirose, S., Fukuda, Y., Okamoto, T., & Mori, J. (2005). Development of a Quadruped walking robot to work on steep slopes, TITAN XI. IEEE/RSJ international conference on intelligent robots and systems (pp. 2067–2072).

    Google Scholar 

  • Drumwright, E. (2008). A fast and stable penalty method for rigid body simulation. IEEE Transactions on Visualization and Computer Graphics, 14(1), 231–240.

    Article  Google Scholar 

  • Featherstone, R. (1987). Robot dynamics algorithms. Boston: Kluwer Academic.

    Google Scholar 

  • Freeman, P. S., & Orin, D. E. (1991). Efficient dynamic simulation of a quadruped using a decoupled tree structured approach. International Journal of Robotics Research, 10, 619–627.

    Article  Google Scholar 

  • Furusho, J., Sano, A., Sakaguchi, M., & Koizumi, E. (1995). Realization of bounce gait in a Quadruped robot with articular-joint-type legs. IEEE international conference on robotics and automation (pp. 697–702).

    Google Scholar 

  • Gambaryan, P. P. (1974). How mammals run: Anatomical adaptations. New York: Wiley.

    Google Scholar 

  • Gerritsen, K. G. M., Van Den Bogert, A. J., & Nigg, B. M. (1995). Direct dynamics simulation of the impact phase in heel-toe running. Journal of Biomechanics, 28(6), 661–668.

    Article  Google Scholar 

  • Harada, K., Kajita, S., Kanehiro, F., Fujiwara, K., Kaneko, K., Yokoi, K., & Hirukawa, H. (2004). Real-time planning of humanoid robot's gait for force controlled manipulation. IEEE International Conference on Robotics and Automation, 1, 616–622.

    Google Scholar 

  • Hirai, K., Hirose, M., Haikawa, Y., & Takenaka, T. (1998). The development of Honda humanoid robot. IEEE international conference on robotic and automation (pp. 1321–1326).

    Google Scholar 

  • Huang, Q., Yokoi, K., Kajita, S., Kaneko, K., Aral, H., Koyachi, N., & Tanie, K. (2001). Planning walking patterns for a biped robot. IEEE Transactions on Robotics and Automation, 17(3), 280–289.

    Article  Google Scholar 

  • Kagami, S., Kitagawa, T., Nishiwaki, K., Sugihara, T., Inaba, M., & Inoue, H. (2002). A fast dynamically equilibrated walking trajectory generation method of humanoid robot. Autonomous Robots, 12(1), 71–82.

    Article  MATH  Google Scholar 

  • Kajita, S., & Tani, K. (1991). Study of dynamic biped locomotion on rugged Terrain. IEEE international conference on robotic and automation (pp. 1405–1411).

    Google Scholar 

  • Kajita, S., Kanehiro, F., Kaneko, K., Fujiwara, K., Harada, K., Yokoi, K., & Hirukawa, H. (2003). Biped walking pattern generation by using preview control of zero-moment point. IEEE International Conference on Robotics and Automation, 2, 1620–1626.

    Google Scholar 

  • Kaneko, K., Harada, K., Kanehiro, F., Miyamori, G., & Akachi, K. (2008). Humanoid robot HRP-3. IEEE/RSJ international conference on intelligent robots and systems (pp. 2471–2478).

    Google Scholar 

  • Kimura, H., Akiyama, S., & Sakurama, K. (1999). Realization of dynamic walking and running of the quadruped using neural oscillator. Autonomous Robots, 7(3), 247–258.

    Article  Google Scholar 

  • Kurazume, R., Hirose, S., & Yoneda, K. (2001). Feedforward and feedback dynamic trot gait control for a quadruped walking vehicle. IEEE International Conference on Robotics and Automation, 3, 3172–3180.

    Google Scholar 

  • Kurazume, R., Hasegawa, T., & Yoneda, K. (2003). The sway compensation trajectory for a biped robot. IEEE International Conference on Robotics and Automation, 1, 925–931.

    Google Scholar 

  • Kuroki, Y., Fujita, M., Ishida, T., Nagasaka, K., & Yamaguchi, J. (2003). A small biped entertainment robot exploring attractive applications. IEEE international conference on robotics and automation (pp. 471 –476).

    Google Scholar 

  • Kwon, O., & Park, J. H. (2009). Asymmetric trajectory generation and impedance control for running of biped robots. Autonomous Robots, 26(1), 47–78.

    Article  Google Scholar 

  • Lloyd, J. (2005). Fast implementation of Lemke’s algorithm for rigid body contact simulation. IEEE international conference on robotics and automation (pp. 4538–4543).

    Google Scholar 

  • Marhefka, D. W., & Orin, D. E. (1996). Simulation of contact using a nonlinear damping model. IEEE International Conference on Robotics and Automation, 2, 1662–1668.

    Google Scholar 

  • Marhefka, D. W., Orin, D. E., Schmiedeier, J. P., & Waldron, K. J. (2003). Intelligent control of quadruped gallops. IEEE/ASME Transactions on Mechatronics, 8(4), 446–456.

    Article  Google Scholar 

  • McGeer, T. (1990). Passive dynamic walking. International Journal of Robotics Research, 9(2), 62–82.

    Article  Google Scholar 

  • McMillan, S., & Orin, D. E. (1998). Forward dynamics of Multilegged vehicles. IEEE international conference on robotics and automation (pp. 464–470).

    Google Scholar 

  • McMillan, S., Orin, D. E., & McGhee, R. B. (1995). Efficient dynamic simulation of an underwater vehicle with a robotic manipulator. IEEE Transactions on Systems, Man, and Cybernetics, 25(8), 1194–1205.

    Article  Google Scholar 

  • Mirtich, B., & Canny, J. (1995). Impulse-based simulation of rigid bodies. Symposium on interactive 3D graphics (pp. 181–188), Monterey, CA.

    Google Scholar 

  • Miura, H., Shimoyama, I., Mitsuishi, M., & Kimura, H. (1985). Dynamical walk of quadruped robot (collie-1). In International symposium on robotics research (pp. 317–324). Cambridge: MIT Press.

    Google Scholar 

  • Morisawa, M., Kajita, S., Kaneko, K., Harada, K., Kanehiro, F., Fujiwara, K., & Hirukawa, H. (2005). Pattern generation of biped walking constrained on parametric surface. IEEE international conference on robotics and automation (pp. 2405–2410).

    Google Scholar 

  • Muybridge, E. (1957). Animals in motion. New York: Dover Publications.

    Google Scholar 

  • Nigg, B. M., & Herzog, W. (1999). Biomechanics of the musculo-skeletal system. Chichester: Wiley.

    Google Scholar 

  • Ono, K., Takahashi, R., & Shimada, T. (2001). Self-excited walking of a biped mechanism. International Journal of Robotics Research, 20(12), 953–966.

    Article  Google Scholar 

  • Ouezdou, F. B., Bruneau, O., & Guinot, J. C. (1998). Dynamic analysis tool for legged robots. Multibody System Dynamics, 2(4), 369–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Park, J. H., & Kim, K. D. (1998). Biped robot walking using gravity-compensated inverted pendulum mode and computed torque control. IEEE international conference on robotics and automation (pp. 3528–3533).

    Google Scholar 

  • Poulakakis, I., Papadopoulos, E., & Buehler, M. (2006). On the stability of the passive dynamics of quadrupedal running with a bounding gait. International Journal of Robotics Research, 25(7), 669–687.

    Article  Google Scholar 

  • Raibert, M. H. (1990). Trotting, pacing and bounding by a quadruped robot. Journal of Biomechanics, 23(1), 79–98.

    Article  Google Scholar 

  • Raibert, M., Tzafestas, S., & Tzafestas, C. (1993). Comparative simulation study of three control techniques applied to a biped robot. IEEE International Conference on Systems Man and Cybernetics, 1, 494–502.

    Google Scholar 

  • Ridderström, C., Ingvast, J., Hardarson, F., Gudmundsson, M., Hellgren, M., Wikander, J., Wadden, T., & Rehbinder, H. (2000). The basic design of the quadruped robot Warp1. International conference on climbing and walking robots.

    Google Scholar 

  • Saha, S. K. (1999a). Analytical expression for the inverted inertia matrix of serial robots. International Journal of Robotic Research, 18(1), 116–124.

    Google Scholar 

  • Saha, S. K. (1999b). Dynamics of serial multibody systems using the decoupled natural orthogonal complement matrices. ASME Journal of Applied Mechanics, 66, 986–996.

    Article  Google Scholar 

  • Sakagami, Y., Watanabe,R., Aoyama, C., Matsunaga, S., Higaki, N., & Fujimura, K. (2002). The intelligent ASIMO: System overview and integration. IEEE international conference on intelligent robots and systems (pp. 2478–2483).

    Google Scholar 

  • Saranli, U., Rizzi, A. A., & Koditschek, D. E. (2004). Model-based dynamic self-righting maneuvers for a hexapedal robot. International Journal of Robotics Research, 23(9), 903–918.

    Article  Google Scholar 

  • Shih, C. L., Gruver, W. A., & Lee, T. T. (1993). Inverse kinematics and inverse dynamics for control of a biped walking machine. Journal of Robotic Systems, 10(4), 531–555.

    Article  MATH  Google Scholar 

  • Stejskal, V., & Valasek, M. (1996). Kinematics and dynamics of machinery. New York: Marcel Dekkar Inc.

    Google Scholar 

  • Stewart, D., & Trinkle, J. (2000). An implicit time-stepping scheme for rigid body dynamics with coulomb friction. IEEE international conference on robotics and automation (pp. 162–169).

    Google Scholar 

  • Sugihara, T., Nakamura, Y., & Inoue, H. (2002). Realtime Humanoid motion generation through ZMP manipulation based on inverted pendulum control. IEEE International Conference on Robotics and Automation, 2, 1404–1409.

    Google Scholar 

  • Vukobratovic, M., Borovac, B., Surla, D., & Stokic, D. (1989). Biped locomotion: Dynamics, stability, control and application. Berlin: Springer.

    Google Scholar 

  • Vukobratovic, M., Potkonjak, V., Babkovic, K., & Borovac, B. (2007). Simulation model of general human and humanoid motion. Multibody System Dynamics, 17(1), 71–96.

    Article  MathSciNet  MATH  Google Scholar 

  • Wisse, M., Schwab, A. L., van der Linde, R. Q., & van der Helm, F. C. T. (2005). How to keep from falling forward: Elementary swing leg action for passive dynamic walkers. IEEE Transactions on Robotics, 21(3), 393–401.

    Article  Google Scholar 

  • Yamaguchi, J., Soga, E., Inoue, S., & Takanishi, A. (1999). Development of a bipedal humanoid robot – Control method of whole body cooperative dynamic biped walking. IEEE international conference on robotics and automation (pp. 368–374).

    Google Scholar 

  • Yamane, K., & Nakamura, Y. (1999). Dynamics computation of structure-varying kinematic chains for motion synthesis of humanoid. IEEE International Conference on Robotics and Automobiles, 1, 714–721.

    Google Scholar 

  • Yamane, K., & Nakamura, Y. (2006). Stable penalty-based model of frictional contacts. IEEE international conference on robotics and automation (pp. 1904–1909).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shah, S.V., Saha, S.K., Dutt, J.K. (2013). Recursive Dynamics for Floating-Base Systems. In: Dynamics of Tree-Type Robotic Systems. Intelligent Systems, Control and Automation: Science and Engineering, vol 62. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5006-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5006-7_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5005-0

  • Online ISBN: 978-94-007-5006-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics