Skip to main content

Assessing Multifunctionality in Relation to Resource Use: A Holistic Approach to Measure Efficiency, Developed by Participatory Research

  • Chapter
  • First Online:
Methods and Procedures for Building Sustainable Farming Systems

Abstract

In this study, emergy analysis and footprinting were combined to assess and illustrate the total resource use caused by milk production and to identify the renewable fraction of this resource use. The total efficiency was defined as a function of the resource use and the multifunctionality of production. The classification of ecosystem services in the Millennium Ecosystem Assessment (MA) was used as the basis for ranking multifunctionality. Three scenarios with different degrees of input intensity and milk production were constructed and compared with the current production mode. The ratio of local renewable resource use to total resource use differed greatly between the different production strategies, being 1:3 for a self-sufficient organic farm and 1:14 for a conventional farm with maximum milk yield. Milk production was fivefold higher on the conventional farm, while generation of ecosystem services increased with increasing self-sufficiency under the local conditions prevailing in the study. Ecosystem services in all categories except provisioning were ranked higher when self-sufficiency increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Araya, H., & Edwards, S. (2006). The Tigray experience. A success story in sustainable agriculture. Third World Network, Environment & Development Series 4, Penang, Malaysia.

    Google Scholar 

  • Beintema, N., Bossio, D., Fernandez, M., Gurib-Fakim, A., Hurni, H., Izac, A. -M., Jiggins, J., Kranjac-Berisavljevic, G., Leakey, R., Ochola, W., Osman-Elasha, B., Plencovich, C., Roling, N., Rosegrant, M., Rosenthal, E., Smith, L. (2008). International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD) Global Summary for Decision Makers. www.agassessment.org

  • Bentley, R. W. (2002). Global oil & gas depletion: An overview. Energy Policy, 30, 189–205.

    Article  Google Scholar 

  • Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: Is habitat heterogeneity the key? Trends in Ecology & Evolution, 18(4), 182–188.

    Article  Google Scholar 

  • Björklund, J. (2000). Emergy analysis to assess ecological sustainability, strengths and weaknesses. Dissertation, Agraria 242, SLU, Uppsala.

    Google Scholar 

  • Björklund, J., & Rydberg, T. (2003). Att värdera uthållighet i lantbrukets markanvändning – genomgång av metoder för miljö- och naturresursanalys. Centrum för uthålligt lantbruk, SLU, Uppsala (In Swedish).

    Google Scholar 

  • Brown, L. R. (2009). Plan B 4.0 Mobilizing to save civilization. New York: Earth Policy Institute.

    Google Scholar 

  • Brown, M. T., & Herendeen, R. (1996). Embodied energy analysis and EMERGY analysis: A comparative view. Ecological Economics, 19, 219–236.

    Article  Google Scholar 

  • Cuadra, M., & Björklund, J. (2007). Assessment of economic and ecological carrying capacity of agricultural crops in Nicaragua. Ecological Indicators, 7(1), 133–149.

    Article  Google Scholar 

  • Daily, G. C. (Ed.). (1997). Nature’s services. Social dependence on natural ecosystem services. Washington, DC: Island press.

    Google Scholar 

  • Donald, P. F., Sanderson, F. J., Burfield, J. I., & van Bommel, F. P. J. (2006). Further evidence of continent-wide impacts of agricultural intensification on European farmland birds, 1990–2000. Agriculture, Ecosystems & Environment, 116, 189–196.

    Article  Google Scholar 

  • FAO. (2007). The state of food and agriculture. Paying farmers for environmental services. http://www.fao.org/docrep/010/a1200e/a1200e00.htm

  • FAO. (2009). How to feed the world in 2050. Discussion paper. Rome, 12–13 October 2009. http://www.fao.org/wsfs/forum2050/wsfs-background-documents/issues-briefs/en/

  • Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S. R., Chapin, S. F., Coe, M. T., Daily, G. C., Gibbs, H. K., Helkowski, J. H., Holloway, T., Howard, E. A., Kucharik, J., Monfreda, C., Patz, A., Prentice, C., Ramankutty, N., & Snyder, P. K. (2005). Global consequences of land use. Science, 309, 570–574.

    Article  CAS  Google Scholar 

  • IPCC. (2007). Impacts, adaptation and vulnerability. Working group II. Contribution to the Intergovernmental Panel och Climate Change Fourth Assessment Report. Summary for Policymakers. www.ipcc.ch

  • Lagerberg, C., Doherty, S. J., & Nilsson, P. O. (1999). Evaluation of the resource use efficiency and sustainability of the Swedish economy using emergy based indices. In C. Lagerberg (Ed.), Emergy analysis of the resources use in Greenhouse Crop Production and of the resources basis of the Swedish economy. Sweden: Swedish University of Agricultural Sciences.

    Google Scholar 

  • Millennium Ecosystem Assessment. (2005). Ecosystems and human well-being: Synthesis. Washington, DC: Island Press.

    Google Scholar 

  • Odum, H. T. (1996). Environmental accounting: Emergy and environmental decision making. New York: Wiley.

    Google Scholar 

  • Ong’wen, O., & Wright, S. (2007). Small farmers and the future of sustainable agriculture. Berlin: Heirich Böll Foundation, Misereor, Wuppertal Institute.

    Google Scholar 

  • Rockström, J., Steffen, W., Noone, K., Chapin, F. S., III, Lambin, E., Lenton, T. M., Scheffer, M., Folke, C., Schellnhuber, H. J., Nykvist, B., De Wit, C. A., Hughes, T., Van der Leeuw, S., Rodhe, H., Sörlin, S., Snyder, P. K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R. W., Fabry, V. J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P., & Foley, J. (2009). Planetary boundaries: Exploring the safe operating space for humanity. Ecology and Society, 14(2), 32 [Online].

    Google Scholar 

  • Steinbeiss, S., Beßler, H., Engels, C., Temperton, V. M., Buchmann, N., Roscher, C., Kreutziger, Y., Baade, J., Habekost, M., & Gleixner, G. (2008). Plant diversity positively affect short-term soil carbon storage in experimental grasslands. Global Change Biology, 14, 2937–2949.

    Article  Google Scholar 

  • Wackernagel, M., & Rees, W. (1996). Our ecological footprint. Reducing human impact on the earth. Gabriola Island: New Society Publisher.

    Google Scholar 

Download references

Acknowledgements

Thanks to Ebba and Sven Schwartz foundation for funding this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johanna Björklund Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björklund, J., Johansson, B. (2013). Assessing Multifunctionality in Relation to Resource Use: A Holistic Approach to Measure Efficiency, Developed by Participatory Research. In: Marta-Costa, A., Soares da Silva, E. (eds) Methods and Procedures for Building Sustainable Farming Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5003-6_11

Download citation

Publish with us

Policies and ethics