Skip to main content

Changes of Thermoelectric Properties and Hardness After HPT Processing of Micro- and Nanostructured Skutterudites

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

In this paper the influence of the starting material on the physical properties after severe plastic deformation (SPD) will be discussed. A bulk p-type skutterudite DD0.44Fe2.1Co1.9Sb12(DD stands for didymium which consists of 4.76% Pr and 95.24% Nd) was (1) hand milled and hot pressed, resulting in crystallite sizes in the μm range and (2) ball milled and hot-pressed, reducing the crystallite size to about 100nm, and afterwards deformed using high pressure torsion (HPT). It could be shown that in both cases the lattice parameters were slightly higher after HPT processing, the difference of the electrical resistivity values between heating and cooling was much larger for the skutterudite, which stems from the microstructured alloy. The thermopower data for both alloys are slightly higher, resulting in power factors at 800K almost like (originally nanosample) or even higher (originally microsample) than before HPT. As the thermal conductivity is always lower after SPD, a much higher ZT can be expected. After deformation hardness measurements showed a much higher increase for the nanosample compared to that of the microstructured one.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rogl G, Grytsiv A, Bauer E, Rogl P, Zehetbauer M (2011) Intermetallics 19:546–555

    Article  Google Scholar 

  2. Rogl G, Grytsiv A, Melnychenko-Koblyuk N, Bauer E, Laumann S, Rogl P (2011) J Phys Condens Matter 23:275601–2756012

    Article  ADS  Google Scholar 

  3. Shi X, Yang J, Salvador R, Cji M, Cho JY, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) J Am Chem Soc 133:7837–7846

    Article  Google Scholar 

  4. Callaway J (1959) Phys Rev 113:1046

    Article  ADS  MATH  Google Scholar 

  5. Callaway J, von Baeyer J (1960) Phys Rev 120:1149

    Article  ADS  MATH  Google Scholar 

  6. Callaway J (1961) Phys Rev 122:787

    Article  ADS  Google Scholar 

  7. Tritt TM (2004) Thermal conductivity. In: Theory, properties and applications. Kluwer Academic/Plenum, New York/Boston/Dirdrecht/London/Moscow

    Book  Google Scholar 

  8. Hicks LD, Harman TC, Dresselhaus MS (1993) Appl Phys Lett 63:3230

    Article  ADS  Google Scholar 

  9. Dresselhaus MS, Heremans JP (2003) Thermoelectrics handbook. Wiley, New York, p 1338

    Google Scholar 

  10. Ashida M, Hamachiyo T, Hasezaki K, Matsunoshita H, Kai M, Horita Z (2009) J Phys Chem Solids 70:1089–1092

    Article  ADS  Google Scholar 

  11. Ashida M, Hamachiyo T, Hasezaki K, Matsunoshita H, Kai M, Horita Z (2008) Mater Sci Forum 584–586:1006–1011

    Article  Google Scholar 

  12. Sun ZM, Hashimoto H, Keawprak N, Ma AB, Li LF, Barsoum NW (2005) J Mater Res 20(4):895–903

    Article  ADS  Google Scholar 

  13. Im J-T, Hartwig KT, Sharp J (2004) Acta Mater 52:49–55

    Article  Google Scholar 

  14. Zhang L, Grytsiv A, Bonarski B, Kerber M, Steman D, Schafler E, Rogl P, Bauer E, Hilscher G, Zehetbauer M (2010) J Alloys Compd 494:78–83

    Article  Google Scholar 

  15. Rogl G, Setman D, Schafler E, Horky J, Kerber M, Zehetbauer M, Falmbigl M, Rogl P, Royanian E, Bauer E (Acta Materialia). accepteded

    Google Scholar 

  16. Zehetbauer M, Grössinger R, Krenn H, Krystian M, Pippan P, Rogl P, Waitz R, Würschum R (2011) Adv Eng Matter 12:692

    Article  Google Scholar 

  17. Zhang L, Grytsiv A, Kerber M, Rogl P, Bauer E, Zehetbauer M, Wosik J, Nauer GE (2010) J Alloys Compd 481:106–115

    Article  Google Scholar 

  18. Rogl G, Grytsiv A, Bauer E, Rogl P, Zehetbauer M (2010) Intermetallics 18:57–60

    Article  Google Scholar 

  19. Rogl G, Zehetbauer M, Kerber M, Rogl P, Bauer E (2011) Mater Sci Forum 667–669:1089–1094

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Austrian Science Fund Project No. S10403.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Rogl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Rogl, G. et al. (2013). Changes of Thermoelectric Properties and Hardness After HPT Processing of Micro- and Nanostructured Skutterudites. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_7

Download citation

Publish with us

Policies and ethics