Skip to main content

Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

Iron based narrow gap semiconductors such as FeSi, FeSb2, or FeGa3have received a lot of attention because they exhibit a large thermopower, as well as striking similarities to heavy fermion Kondo insulators. Many proposals have been advanced, however, lacking quantitative methodologies applied to this problem, a consensus remained elusive to date. Here, we employ realistic many-body calculations to elucidate the impact of electronic correlation effects on FeSi. Our methodology accounts for all substantial anomalies observed in FeSi: the metallization, the lack of conservation of spectral weight in optical spectroscopy, and the Curie susceptibility. In particular, we find a very good agreement for the anomalous thermoelectric power. Validated by this congruence with experiment, we further discuss a new physical picture of the microscopic nature of the insulator-to-metal crossover. Indeed, we find the suppression of the Seebeck coefficient to be driven by correlation induced incoherence. Finally, we compare FeSi to its iso-structural and iso-electronic homologue RuSi, and predict that partially substituted Fe1 − x Ru x Si will exhibit an increased thermopower at intermediate temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Indeed, the positions of the iron and silicon atoms are (u,u,u), (\( \frac{1} {2}\) + u,\(\frac{1} {2}\)-u,1-u), (1-u,\(\frac{1} {2}\) + u,\(\frac{1} {2}\) + u), and (\frac{1} {2} − u,1 − u,\frac{1} {2} + u) with u(Fe) = 1/4 and u(Si) = 3/4 for the rock-salt structure, and u(Fe) = 0.136 and u(Si) = 0.844 for FeSi [28].

  2. 2.

    As measured by a linear interpolation of the u parameters from above (see also Ref. [30]).

  3. 3.

    For the theoretical local spin susceptibility see Ref. [24].

  4. 4.

    However, a notable dependence of the thermopower on the precise stoichiometry is witnessed in experiments [17].

  5. 5.

    For transport calculations that are based on density functional theory we assume a constant scattering rate \(\mathfrak{I}\Sigma = -1\) meV.

  6. 6.

    For a comparison of the related couple FeSb2and RuSb2, see Refs. [20, 54].

  7. 7.

    It would be of great value to have experimental measurements on RuSi up to higher temperatures.

References

  1. Jaccarino V, Wertheim GK, Wernick JH, Walker LR, Arajs S (1967) Paramagnetic excited state of FeSi. Phys Rev 160(3):476–482

    Article  ADS  Google Scholar 

  2. Schlesinger Z, Fisk Z, Hai-Tao Zhang, Maple MB, DiTusa J, Aeppli G (1993) Unconventional charge gap formation in FeSi. Phys Rev Lett 71(11):1748–1751

    Article  ADS  Google Scholar 

  3. Degiorgi L, Hunt MB, Ott HR, Dressel M, Feenstra BJ, Grüner G, Fisk Z, Canfield P (1994) Optical evidence of Anderson-Mott localization in FeSi. Europhys Lett 28(5):341

    Article  ADS  Google Scholar 

  4. Paschen S, Felder E, Chernikov MA, Degiorgi L, Schwer H, Ott HR, Young DP, Sarrao JL, Fisk Z (1997) Low-temperature transport, thermodynamic, and optical properties of FeSi. Phys Rev B 56(20):12916–12930

    Article  ADS  Google Scholar 

  5. Wolfe R, Wernick JH, Haszko SE (1965) Thermoelectric properties of FeSi. Phys Lett 19(6):449–450

    Article  ADS  Google Scholar 

  6. Takagi S, Yasuoka H, Ogawa S, Wernick JH (1981) 29si nmr studies of an “unusual” paramagnet FeSi – Anderson localized state model–. J Phys Soc Jpn 50(8):2539–2546

    Article  ADS  Google Scholar 

  7. Fisk Z, Aeppli G (1992) Kondo insulators. Comments Cond Mat Phys 16:150–170

    Google Scholar 

  8. Schlesinger Z, Fisk Z, Hai-Tao Zhang, Maple MB (1997) Is FeSi a Kondo insulator? Phys B 237–238:460–462. Proceedings of the Yamada conference XLV, the international conference on the physics of transition metals

    Google Scholar 

  9. Mandrus D, Sarrao JL, Migliori A, Thompson JD, Fisk Z (1995) Thermodynamics of FeSi. Phys Rev B 51(8):4763–4767

    Article  ADS  Google Scholar 

  10. Varma CM (1994) Aspects of strongly correlated insulators. Phys Rev B 50(14):9952–9956

    Article  ADS  Google Scholar 

  11. Takahashi Y, Moriya T (1979) A theory of nearly ferromagnetic semiconductors. J Phys Soc Jpn 46(5):1451–1459

    Article  ADS  Google Scholar 

  12. Anisimov VI, Yu Ezhov S, Elfimov IS, Solovyev IV, Rice TM (1996) Singlet semiconductor to ferromagnetic metal transition in FeSi. Phys Rev Lett 76(10):1735–1738

    Article  ADS  Google Scholar 

  13. van der Marel D, Damascelli A, Schulte K, Menovsky AA (1998) Spin, charge, and bonding in transition metal mono-silicides. Phys B 244:138–147. Proceedings of LEES

    Google Scholar 

  14. Jarlborg T (1999) Electronic structure and properties of pure and doped ε-FeSi from ab initio local-density theory. Phys Rev B 59(23):15002–15012

    Article  ADS  Google Scholar 

  15. Sales BC, Delaire O, McGuire MA, May AF (2011) Thermoelectric properties of Co-, Ir-, and Os-doped FeSi alloys: evidence for strong electron-phonon coupling. Phys Rev B 83(12):125209

    Article  ADS  Google Scholar 

  16. Delaire O, Marty K, Stone MB, Kent PRC, Lucas MS, Abernathy DL, Mandrus D, Sales BC (2011) Phonon softening and metallization of a narrow-gap semiconductor by thermal disorder. Proc Natl Acad Sci USA 108(12):4725–4730

    Article  ADS  Google Scholar 

  17. Buschinger B, Geibel C, Steglich F, Mandrus D, Young D, Sarrao JL, Fisk Z (1997) Transport properties of FeSi. Phys B 230–232:784–786. Proceedings of SCES

    Google Scholar 

  18. Bentien A, Johnsen S, Madsen GKH, Iversen BB, Steglich F (2007) Colossal seebeck coefficient in strongly correlated semiconductor FeSb2. Europhys Lett 80(1):17008 (5pp)

    Google Scholar 

  19. Sun P, Oeschler N, Johnsen S, Iversen Bo B, Steglich F (2010) Narrow band gap and enhanced thermoelectricity in FeSb2. Dalton Trans 39(4):1012–1019

    Article  Google Scholar 

  20. Sun P, Oeschler N, Johnsen S, Iversen Bo B, Steglich F (2009) Huge thermoelectric power factor: FeSb2versus FeAs2and RuSb2. Appl Phys Express 2(9):091102

    Article  ADS  Google Scholar 

  21. Tomczak JM, Haule K, Miyake T, Georges A, Kotliar G (2010) Thermopower of correlated semiconductors: application to FeAs2and FeSb2. Phys Rev B 82(8):085104

    Article  ADS  Google Scholar 

  22. Hadano Y, Narazu S, Avila MA, Onimaru T, Takabatake T (2009) Thermoelectric and magnetic properties of a narrow-gap semiconductor FeGa3. J Phys Soc Jpn 78(1):013702

    Article  ADS  Google Scholar 

  23. Kotliar G, Savrasov SY, Haule K, Oudovenko VS, Parcollet O, Marianetti CA (2006) Electronic structure calculations with dynamical mean-field theory. Rev Mod Phys 78(3): 865–951

    Article  ADS  Google Scholar 

  24. Tomczak JM, Haule K, Kotliar G (2012) Signatures of correlation effects in iron silicide. Proc Natl Acad Sci USA 109(9):3243

    Article  ADS  Google Scholar 

  25. Damascelli A, Schulte K, van der Marel D, Menovsky AA (1997) Infrared spectroscopic study of phonons coupled to charge excitations in FeSi. Phys Rev B 55:R4863–R4866

    Article  ADS  Google Scholar 

  26. Menzel D, Popovich P, Kovaleva NN, Schoenes J, Doll K, Boris AV (2009) Electron-phonon interaction and spectral weight transfer in Fe1 − x Co x Si. Phys Rev B 79(16):165111

    Article  ADS  Google Scholar 

  27. Kokalj A (1999) Xcrysden a new program for displaying crystalline structures and electron densities. J Mol Graph Model 17(3–4):176–179

    Article  Google Scholar 

  28. Mattheiss LF, Hamann DR (1993) Band structure and semiconducting properties of FeSi. Phys Rev B 47(20):13114–13119

    Article  ADS  Google Scholar 

  29. Blaha P, Schwarz K, Madsen G-K-H, Kvasnicka D, Luitz J (2001) Wien2k, an augmented plane wave plus local orbitals program for calculating crystal properties. Vienna University of Technology, Austria. ISBN 3-9501031-1-2

    Google Scholar 

  30. Mazurenko VV, Shorikov AO, Lukoyanov AV, Kharlov K, Gorelov E, Lichtenstein AI, Anisimov VI (2010) Metal-insulator transitions and magnetism in correlated band insulators: FeSi and Fe1 − x Co x Si. Phys Rev B 81(12):125131

    Article  ADS  Google Scholar 

  31. Haule K, Yee C-H, Kim K (2010) Dynamical mean-field theory within the full-potential methods: electronic structure of CeIrIn5, CeCoIn5, and CeRhIn5. Phys Rev B 81(19):195107

    Article  ADS  Google Scholar 

  32. Kutepov A, Haule K, Savrasov SY, Kotliar G (2010) Self-consistent GWdetermination of the interaction strength: application to the iron arsenide superconductors. Phys Rev B 82:045105

    Article  ADS  Google Scholar 

  33. Haule K (2007) Quantum monte carlo impurity solver for cluster dynamical mean-field theory and electronic structure calculations with adjustable cluster base. Phys Rev B 75(15):155113

    Article  ADS  Google Scholar 

  34. Werner P, Comanac A, de’ Medici L, Troyer M, Millis AJ (2006) Continuous-time solver for quantum impurity models. Phys Rev Lett 97(7):076405

    Google Scholar 

  35. Klein M, Zur D, Menzel D, Schoenes J, Doll K, Röder J, Reinert F (2008) Evidence for itineracy in the anticipated Kondo insulator FeSi: a quantitative determination of the band renormalization. Phys Rev Lett 101(4):046406

    Article  ADS  Google Scholar 

  36. Arita M, Shimada K, Takeda Y, Nakatake M, Namatame H, Taniguchi M, Negishi H, Oguchi T, Saitoh T, Fujimori A, Kanomata T (2008) Angle-resolved photoemission study of the strongly correlated semiconductor FeSi. Phys Rev B 77(20):205117

    Article  ADS  Google Scholar 

  37. Mahan GD, Sofo JO (1996) The best thermoelectric. Proc Natl Acad Sci USA 93(15): 7436–7439

    Article  ADS  Google Scholar 

  38. Fu C, Doniach S (1995) Model for a strongly correlated insulator: FeSi. Phys Rev B 51(24):17439–17445

    Article  ADS  Google Scholar 

  39. Yang K-Y, Yamashita Y, Läuchli AM, Sigrist M, Rice TM (2011) Microscopic model for the semiconductor-to-ferromagnetic-metal transition in FeSi1 − x Ge x alloys. Europhys Lett 95(4):47007

    Article  ADS  Google Scholar 

  40. Haule K, Kotliar G (2009) Coherence-incoherence crossover in the normal state of iron oxypnictides and importance of Hund’s rule coupling. New J Phys 11(2):025021

    Article  Google Scholar 

  41. Mravlje J, Aichhorn M, Miyake T, Haule K, Kotliar G, Georges A (2011) Coherence-incoherence crossover and the mass-renormalization puzzles in Sr2RuO4. Phys Rev Lett 106:096401

    Article  ADS  Google Scholar 

  42. Yin ZP, Haule K, Kotliar G (2011) Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat Mater 10(12):932. preprint: arXiv1104.3454

    Google Scholar 

  43. Kunes J, Lukoyanov AV, Anisimov VI, Scalettar RT, Pickett WE (2008) Collapse of magnetic moment drives the Mott transition in MnO. Nat Mater 7(3):198

    Article  ADS  Google Scholar 

  44. Tomczak JM, Miyake T, Aryasetiawan F (2010) Realistic many-body models for manganese monoxide under pressure. Phys Rev B 81(11):115116

    Article  ADS  Google Scholar 

  45. Raccah PM, Goodenough JB (1967) First-order localized-electron \(< -- >\)collective-electron transition in LaCoO3. Phys Rev 155(3):932–943

    Article  ADS  Google Scholar 

  46. Kuneš J, Křápek V (2011) Disproportionation and metallization at low-spin to high-spin transition in multiorbital Mott systems. Phys Rev Lett 106(25):256401

    Article  ADS  Google Scholar 

  47. Schweitzer H, Czycholl G (1991) Resistivity and thermopower of heavy-fermion systems. Phys Rev Lett 67(26):3724–3727

    Article  ADS  Google Scholar 

  48. Oudovenko VS, Kotliar G (2002) Thermoelectric properties of the degenerate Hubbard model. Phys Rev B 65(7):075102

    Article  ADS  Google Scholar 

  49. Oudovenko VS, Pálsson G, Haule K, Kotliar G, Savrasov SY (2006) Electronic structure calculations of strongly correlated electron systems by the dynamical mean-field method. Phys Rev B 73(3):035120

    Article  ADS  Google Scholar 

  50. Saso T, Urasaki K (2002) Seebeck coefficient of Kondo insulators. J Phys Soc Jpn 71S(Supplement):288–290

    Google Scholar 

  51. Held K, Arita R, Anisimov VI, Kuroki K (2009) The lda+dmft route to identify good thermoelectrics. In: Zlatic V, Hewson AC, (eds) Properties and applications of thermoelectric materials. NATO science for peace and security series B: physics and biophysics, pp 141–157. Springer, Netherlands. doi:10.1007/978-90-481-2892-1_9

    Google Scholar 

  52. Haule K, Kotliar G (2009) Thermoelectrics near the Mott localization–delocalization transition. In: Properties and applications of thermoelectric materials, Proceedings of the NATO advanced research workshop on properties and application of thermoelectric materials, Hvar, Croatia, 21–26 Sept 2008. NATO science for peace and security series B: physics and biophysics. Springer, Netherlands, pp 119–131

    Google Scholar 

  53. Hohl H, Ramirez AP, Goldmann C, Ernst G, Bucher E (1998) Transport properties of RuSi, RuGe, OsSi, and quasi-binary alloys of these compounds. J Alloys Compd 278(1–2):39–43

    Article  Google Scholar 

  54. Herzog A, Marutzky M, Sichelschmidt J, Steglich F, Kimura S, Johnsen S, Iversen BB (2010) Strong electron correlations in FeSb2: an optical investigation and comparison with RuSb2. Phys Rev B 82:245205

    Article  ADS  Google Scholar 

  55. Buschinger B, Guth W, Weiden M, Geibel C, Steglich F, Vescoli V, Degiorgi L, Wassilew-Reul C (1997) Rusi: metal-semiconductor transition by change of structure. J Alloys Compd 262–263:238–242. Proceedings of the twelfth international conference on solid compounds of transition elements

    Google Scholar 

  56. Vescoli V, Degiorgi L, Buschinger B, Guth W, Geibel C, Steglich F (1998) The optical properties of RuSi: Kondo insulator or conventional semiconductor? Solid State Commun 105(6):367–370

    Article  ADS  Google Scholar 

  57. Mani A, Bharathi A, Mathi Jaya S, Reddy GLN, Sundar CS, Hariharan Y (2002) Evolution of the Kondo insulating gap in Fe1 − x Ru x Si. Phys Rev B 65:245206

    Article  ADS  Google Scholar 

  58. Imai Y, Watanabe A (2006) Electronic structures of platinum group elements silicides calculated by a first-principle pseudopotential method using plane-wave basis. J Alloys Compd 417(1–2):173–179

    Article  Google Scholar 

  59. Zhao YN, Han HL, Yu Y, Xue WH, Gao T (2009) First-principles studies of the electronic and dynamical properties of monosilicides MSi (M = Fe, Ru, Os). Europhys Lett 85(4):47005

    Article  ADS  Google Scholar 

  60. Shaposhnikov V, Migas D, Borisenko V, Dorozhkin N (2009) Features of the band structure for semiconducting iron, ruthenium, and osmium monosilicides. Semiconductors 43:142–144

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank F. Steglich, P. Sun, and S. Paschen for stimulating discussions. JMT further acknowledges IICAM travel support through the NATO advanced workshop “The New Materials for Thermoelectric Applications: Theory and Experiment” in Hvar, as well as the hospitality at MPI CPfS, Dresden. The authors were supported by the NSF-materials world network under grant number NSF DMR 0806937 and NSF DMR 0906943, and by the PUF program. Acknowledgment is also made to the donors of the American Chemical Society Petroleum Research Fund 48802 for partial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan M. Tomczak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Tomczak, J.M., Haule, K., Kotliar, G. (2013). Thermopower of the Correlated Narrow Gap Semiconductor FeSi and Comparison to RuSi. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_4

Download citation

Publish with us

Policies and ethics