Skip to main content

The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

We review the recently proposed extension of the Gutzwiller approximation (SchirĂ² and Fabrizio, Phys Rev Lett 105:076401, 2010), designed to describe the out-of-equilibrium time-evolution of a Gutzwiller-type variational wave function for correlated electrons. The method, which is strictly variational in the limit of infinite lattice-coordination, is quite general and flexible, and it is applicable to generic non-equilibrium conditions, even far beyond the linear response regime. As an application, we discuss the quench dynamics of a single-band Hubbard model at half-filling, where the method predicts a dynamical phase transition above a critical quench that resembles the sharp crossover observed by time-dependent dynamical mean field theory. We next show that one can actually define in some cases a multi-configurational wave function combination of a whole set of mutually orthogonal Gutzwiller wave functions. The Hamiltonian projected in that subspace can be exactly evaluated and is equivalent to a model of auxiliary spins coupled to non-interacting electrons, closely related to the slave-spin theories for correlated electron models. The Gutzwiller approximation turns out to be nothing but the mean-field approximation applied to that spin-fermion model, which displays, for any number of bands and integer fillings, a spontaneous Z 2 symmetry breaking that can be identified as the Mott insulator-to-metal transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In reality, for the method to work it is enough that Wick’s theorem applies, hence ∣Ψ 0⟩ could even be a BCS wavefunction. Here, for sake of simplicity, we shall only consider Slater determinants.

  2. 2.

    In fact, we can parametrize

    $$\hat{{\Phi }}_{i}(t) =\hat{ {U}}_{i}(t)\,\sqrt{\hat{{P}}_{i } (t)},$$

    where \(\hat{{U}}_{i}(t)\) is a unitary matrix with elements U i Γ{n}, while \(\hat{{P}}_{i}(t)\) a positive definite matrix with elements P i {n}{m}(t), which can be represented as the density matrix of a local normalized state

    $$\mid {\psi }_{i}(t)\rangle =\sum\limits_{\{n\}}\,{c}_{i\{n\}}(t)\mid i;\{ n\}\rangle ,$$

    with ⟨ψ i (t)∣ψ i (t)⟩ = 1, which automatically fulfills Eq. (16.26). In order to impose the constraint (16.27) it is then sufficient that, for α ≠ β

    $$\langle {\psi }_{i}(t)\mid {d}_{i\alpha }^{\dag }{d}_{ i\beta }^{ }\mid {\psi }_{i}(t)\rangle = 0.$$

    This can be done by regarding ∣ψ i (t)⟩ as the eigenstate of a local many-body Hamiltonian that does not contain any term of the form c iα  † ∣i; { n}⟩⟨i; { n}∣c iβ for any ∣{n}⟩ including the vacuum.

  3. 3.

    Once again, we must make sure that the effective Hamiltonian ℋ  ∗ (t), Eq. (16.57), is such that the local density matrix remains indeed diagonal in the operators c ia  † .

References

  1. Giannetti G, Cilento F, Dal Conte S, Coslovich G, Ferrini G, Molegraaf H, Raichle M, Liang R, Eisaki H, Greven M, Damascelli A, van der Marel D, Parmigiani F (2011) Nature Commun 2:353

    Google Scholar 

  2. Ichikawa H, Nozawa S, Sato T, Tomita A, Ichiyanagi K, Chollet M, Guerin L, Dean N, Cavalleri A, Adachi S, Arima T, Sawa H, Ogimoto Y, Nakamura M, Tamaki R, Miyano K, Koshihara S (2010) Nature Mater 10:101

    Article  ADS  Google Scholar 

  3. Fausti D, Tobey RI, Dean N, Kaiser S, Dienst A, Hoffmann MC, Pyon S, Takayama T, Takagi H, Cavalleri A (2011) Science 331(6014):189

    Article  ADS  Google Scholar 

  4. Rossi F, Kuhn T (2002) Rev Mod Phys 74(3):895

    Article  ADS  Google Scholar 

  5. Krausz F, Ivanov M (2009) Rev Mod Phys 81(1):163

    Article  ADS  Google Scholar 

  6. Polkovnikov A, Sengupta K, Silva A, Vengalattore M (2011) Rev Mod Phys 83:863

    Article  ADS  Google Scholar 

  7. Eckstein M, Kollar M, Werner P (2009) Phys Rev Lett 103:056403

    Article  ADS  Google Scholar 

  8. Eckstein M, Werner P (2011) Phys Rev B 84:035122

    Article  ADS  Google Scholar 

  9. SchirĂ³ M, Fabrizio M (2010) Phys Rev Lett 105:076401

    Article  ADS  Google Scholar 

  10. SchirĂ³ M, Fabrizio M (2011) Phys Rev B 83:165105

    Article  ADS  Google Scholar 

  11. Seibold G, Lorenzana J (2001) Phys Rev Lett 86:2605

    Article  ADS  Google Scholar 

  12. de’Medici L, Georges A, Biermann S (2005) Phys Rev B 72(20):205124

    Google Scholar 

  13. Hassan SR, de’ Medici L (2010) Phys Rev B 81(3):035106

    Google Scholar 

  14. Huber SD, RĂ¼egg A (2009) Phys Rev Lett 102:065301

    Article  ADS  Google Scholar 

  15. RĂ¼egg A, Huber SD, Sigrist M (2010) Phys Rev B 81:155118

    Article  ADS  Google Scholar 

  16. Georges A, Kotliar G, Krauth W, Rozenberg MJ (1996) Rev Mod Phys 68:13

    Article  MathSciNet  ADS  Google Scholar 

  17. Gutzwiller MC (1964) Phys Rev 134:A923

    Article  ADS  Google Scholar 

  18. Gutzwiller MC (1965) Phys Rev 137:A1726

    Article  MathSciNet  ADS  Google Scholar 

  19. Fabrizio M (2007) Phys Rev B 76:165110

    Article  ADS  Google Scholar 

  20. BĂ¼nemann J, Weber W, Gebhard F (1998) Phys Rev B 57:6896

    Article  ADS  Google Scholar 

  21. LanatĂ  N, Barone P, Fabrizio M (2008) Phys Rev B 78:155127

    Article  ADS  Google Scholar 

  22. Lechermann F, Georges A, Kotliar G, Parcollet O (2007) Phys Rev B 76:155102

    Article  ADS  Google Scholar 

  23. BĂ¼nemann J, Gebhard F (2007) Phys Rev B 76:193104

    Article  ADS  Google Scholar 

  24. LanatĂ  N, Strand HUR, Dai X, Hellsing B (2012) Phys Rev B 85:035133

    Article  ADS  Google Scholar 

  25. Florens S, Georges A (2004) Phys Rev B 70:035114

    Article  ADS  Google Scholar 

  26. Elitzur S (1975) Phys Rev D 12:3978

    Article  ADS  Google Scholar 

  27. Maślanka P (1988) Acta Phys Pol B19:269

    Google Scholar 

  28. Baruselli PP, Fabrizio M (2012) Phys Rev B 85:073106

    Article  ADS  Google Scholar 

Download references

Acknowledgements

These proceedings are based on the work that I have done in collaboration with Marco SchirĂ², whom I thank warmly. I am also grateful to Nicola LanatĂ  for useful discussions. I also acknowledge support by the EU under the project GOFAST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Fabrizio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Fabrizio, M. (2013). The Out-of-Equilibrium Time-Dependent Gutzwiller Approximation. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_16

Download citation

Publish with us

Policies and ethics