Skip to main content

Inducing Current in One Dimensional Systems of Interacting Fermions

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

We study a real-time current induced by strong electric field in isolated systems of interacting spinless fermions. It will be demonstrated for a generic (metallic or insulating) system at high temperature that the major nonlinear effects can be accounted by internal heating. We identify a quasi–equilibrium evolution and show that a simple extension of the linear response theory allows one to calculate the real–time current without a formal solution of the time–dependent problem. For stronger electric fields this quasi–equilibrium regime terminates and the Bloch oscillations set in. An anomalous nonlinear response of the integrable systems will also be briefly discussed. Finally we show a simple way of solving an important inverse problem: how to tune an appropriate electromagnetic pulse which in a finite quantum system induces the assumed time–dependent current?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogasawara T et al (2000) Phys Rev Lett 85:2204; CavalieriPlease provide article title for all journal references. AL et al (2007) Nature 449:1029–1032; Perfetti L et al (2006) Phys Rev Lett 97:067402

    Google Scholar 

  2. Vandersypen LMK (2004) Appl Phys Lett 85:4394

    Article  ADS  Google Scholar 

  3. Greiner M et al (2002) Nature 419:51; Trotzky S et al (2006) Science 319:295

    Google Scholar 

  4. Weiner AM (2000) Rev Sci Instrum 71:1929

    Article  ADS  Google Scholar 

  5. Barmettler P (2010) New J Phys 12:055017

    Article  Google Scholar 

  6. Mierzejewski M, Prelovšek P (2010) Phys Rev Lett 105:186405

    Article  ADS  Google Scholar 

  7. Mierzejewski M, Vidmar L, Bonča J, Prelovšek P (2011) Phys Rev Lett 106:16401

    Article  ADS  Google Scholar 

  8. Mierzejewski M, Bonča J, Prelovšek P (2011) Phys Rev Lett 107:126601; Steinigeweg R et al (2012) arXiv1201.2844S

    Google Scholar 

  9. White SR, Feiguin AE (2004) Phys Rev Lett 93:076401; Schollwöck U (2005) Rev Mod Phys 77:259

    Google Scholar 

  10. Freericks JK et al (2006) Phys Rev Lett 97:266408

    Article  ADS  Google Scholar 

  11. Heidrich-Meisner F et al (2009) Phys Rev B 79:235336; Schmitteckert P (2004) Phys Rev B 70:121302(R); Žnidarič M (2011) Phys Rev Lett 106:220601; Prosen T (2011) Phys Rev Lett 107:137201

    Google Scholar 

  12. Oka T, Aoki H (2005) Phys Rev Lett 95:137601; Takahashi A, Itoh H, Aihara M (2008) Phys Rev B 77:205105; Sugimoto N et al (2008) Phys Rev B 78:155104; Eckstein M, Oka T, Werner P (2010) Phys Rev Lett 105:146404

    Google Scholar 

  13. Eckstein M, Werner P (2011) Phys Rev Lett 107:186406

    Article  ADS  Google Scholar 

  14. Vidmar L, Bonča J, Mierzejewski M, Prelovšek P, Trugman SA (2011) Phys Rev B 83:134301

    Article  ADS  Google Scholar 

  15. Zotos X, Prelovšek P (1996) Phys Rev B 53:983

    Article  ADS  Google Scholar 

  16. Zotos X (1999) Phys Rev Lett 82:1764; Sirker J, Pereira RG, Affleck I (2009) Phys Rev Lett 103:216602; Steinigeweg R, Brenig W (2011) Phys Rev Lett 107:250602

    Google Scholar 

  17. Long MW et al (2003) Phys Rev B 68:235106

    Article  ADS  Google Scholar 

  18. Park TJ, Light JC (1986) J Chem Phys 85:5870

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Program P1-0044 of the Slovenian Research Agency (ARRS) and RTN-LOTHERM project. M.M. acknowledges support from the N N202052940 project of MNiSW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Mierzejewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Mierzejewski, M., Bonča, J., Prelovšek, P. (2013). Inducing Current in One Dimensional Systems of Interacting Fermions. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_14

Download citation

Publish with us

Policies and ethics