Skip to main content

Monte-Carlo Approach to Stationary Non-equilibrium of Mesoscopic Systems

  • Conference paper
  • First Online:
  • 1835 Accesses

Abstract

Calculating properties of correlated systems out of equilibrium is a challenging task, even if one targets only stationary situations. In particular, transport through nano-objects like molecules or quantum dots is of strong interest, and a theory to calculate transport properties or merely local quantities in a reliable way for reasonably strong correlations very desirable.

Based on a suggestion by Han and Heary [1] we show that one can use advanced quantum Monte-Carlo techniques to calculate quantities with high accuracy [2]. Although the ultimate goal will be to extract current or conductance respectively thermoelectric effects, a first step is to calculate local properties, like the double occupancy or magnetization, as function of external bias.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. J.E. Han, and R.J. Heary, Phys. Rev. Lett. 99, 236808 (2007).

    Google Scholar 

  2. A. Dirks, Ph. Werner, M. Jarrell, and Th. Pruschke, Phys. Rev. E 82, 26701 (2010).

    Google Scholar 

  3. A.D. Yoffe, Adv. Phys. 50, 1 (2001).

    Google Scholar 

  4. R. Hanson, L.P. Kouwenhoven, J.R. Petta, S. Tarucha, and L.M.K. Vandersypen, Rev. Mod. Phys. 79, 1217 (2007). CE: [4] cited in text part

    Google Scholar 

  5. M. Pustilnik and A. Georges, J. Phys.: Cond. Mat. 16, R513 (2004).

    Google Scholar 

  6. S. Hershfield, J.H. Davies, and J.W. Wilkins, Phys. Rev. B 46, 7046 (1992).

    Google Scholar 

  7. T. Fujii and K. Ueda, Phys. Rev. B 68, 155310 (2003). CE: [8] not cited in text part

    Google Scholar 

  8. J. König, J. Schmid, H. Schoeller, and G. Schn, Phys. Rev. B 54, 16820 (1996); H. Schoeller and J. König, Phys. Rev. Lett. 84, 3686 (2000); S.G. Jakobs, V. Meden, and H. Schoeller, Phys. Rev. Lett. 99, 150603 (2007). CE: [9] not cited in text part

    Google Scholar 

  9. A. Rosch, J. Paaske, J. Kroha, and P. Wölfle, Phys. Rev. Lett. 90, 076804 (2003); J. Phys. Soc. Jp. 74, 118 (2005). CE: [10] not cited in text part

    Google Scholar 

  10. R. Gezzi, T. Pruschke, and V. Meden, Phys. Rev. B 75, 045324 (2007). CE: [11] not cited in text part

    Google Scholar 

  11. S. Weiss, J. Eckel, M. Thorwart, and R. Egger, Phys. Rev. B 77, 195316 (2008). CE: [12] not cited in text part

    Google Scholar 

  12. P. Werner, T. Oka, and A.J. Millis, Phys. Rev. B 79, 035320 (2009).

    Google Scholar 

  13. F.B. Anders, Phys. Rev. Lett. 101, 066804 (2008).

    Google Scholar 

  14. E. Boulat, H. Saleur, and P. Schmitteckert, Phys. Rev. Lett. 101, 140601 (2008); F. Heidrich-Meisner, G.B. Martins, C.A. Buesser, K.A. Al-Hassanieh, A.E. Feiguin, G. Chiappe, E.V. Anda, and E. Dagotto, Eur. Phys. J. B 67, 527 (2009). CE: [15] not cited in text part

    Google Scholar 

  15. M. Jarrell and J.E. Gubernatis, Phys. Rep. 269, 133 (1996).

    Google Scholar 

  16. S. Hershfield, Phys. Rev. Lett. 70, 2134 (1993).

    Google Scholar 

  17. E. Gull, A. Millis, A. Lichtenstein, A. Rubtsov, M. Troyer, and P. Werner, Rev. Mod. Phys. 83, 349 (2011).

    Google Scholar 

  18. Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

    Google Scholar 

  19. See the remarks on the analytic continuation of Nambu off-diagonal Green’s functions in: M. Jarrell, A. Macridin, K. Mikelsons, D.G.S.P. Doluweera, and J.E. Gubernatis, AIP Conf. Proc. 1014, 34 (2008).

    Google Scholar 

Download references

Acknowledgements

The authors want to acknowledge useful discussions with J. Freericks, A. Schiller and M. Jarrell.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Dirks .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Dirks, A., Pruschke, T., Han, J.E. (2013). Monte-Carlo Approach to Stationary Non-equilibrium of Mesoscopic Systems. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_12

Download citation

Publish with us

Policies and ethics