Skip to main content

Nernst Effect of Iron Pnictide and Cuprate Superconductors: Signatures of Spin Density Wave and Stripe Order

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

The Nernst effect has recently proven to be a sensitive probe for detecting unusual normal state properties of unconventional superconductors. In particular, it may sensitively detect Fermi surface reconstructions which are connected to a charge or spin density wave (SDW) ordered state, and even fluctuating forms of such a state. Here we summarize recent results for the Nernst effect of the iron pnictide superconductor \({\mathrm {LaO}}_{1-{\mathrm {x}}}{\mathrm {F}}_{\mathrm {x}}{\mathrm {FeAs}}\), whose ground state evolves upon doping from an itinerant SDW to a superconducting state, and the cuprate superconductor \({\mathrm {La}}_{1.8-\mathrm {x}}\mathrm {Eu}_{0.2}\mathrm {Sr}_{\mathrm {x}}\mathrm {CuO}_4\) which exhibits static stripe order as a ground state competing with the superconductivity. In \(\mathrm {LaFeAsO}_{1-\mathrm {x}}{\mathrm {F}}_{\mathrm {{x}}}\) , the SDW order leads to a huge Nernst response, which allows to detect even fluctuating SDW precursors at superconducting doping levels where long range SDW order is suppressed. This is in contrast to the impact of stripe order on the normal state Nernst effect in \({\mathrm {La}}_{1.8-\mathrm {x}}{\mathrm {Eu}}_{0.2}{\mathrm {Sr}}_{\mathrm {x}}{\mathrm {CuO}}_4\) . Here, though signatures of the stripe order are detectable in the temperature dependence of the Nernst coefficient, its overall temperature dependence is very similar to that of \({\mathrm {La}}_{2-\mathrm {x}}{\mathrm {Sr}}_{\mathrm {x}}{\mathrm {CuO}}_{4}\) , where stripe order is absent. The anomalies which are induced by the stripe order are very subtle and the enhancement of the Nernst response due to static stripe order in \({\mathrm {La}}_{1.8-\mathrm {x}}{\mathrm {Eu}}_{0.2}{\mathrm {Sr}}_{\mathrm {x}}{\mathrm {CuO}}_4\) as compared to that of the pseudogap phase in \({\mathrm {La}}_{2-\mathrm {x}}{\mathrm {Sr}}_{\mathrm {x}}\mathrm {CuO}_{4}\) , if any, is very small.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K. Behnia, Journal of Physics: Condensed Matter 21, 113101 (2009).

    Google Scholar 

  2. Y. Wang, Z.A. Xu, T. Kakeshita, S. Uchida, S. Ono, Y. Ando, N.P. Ong, Phys. Rev. B 64, 224519 (2001).

    Google Scholar 

  3. E.H. Sondheimer, Proc. R. Soc. Lond. A 193, 484 (1948).

    Google Scholar 

  4. Z.A. Xu, N.P. Ong, Y. Wang, T. Kakeshita, S. Uchida, Nature 406, 486 (2000)

    Google Scholar 

  5. Y. Wang, L. Li, N.P. Ong, Phys. Rev. B 73, 024510 (2006).

    Google Scholar 

  6. O. Cyr-Choinière, R. Daou, F. Laliberté, D. LeBoeuf, N. Doiron-Leyraud, J. Chang, J.Q. Yan, J.G. Cheng, J.S. Zhou, J.B. Goodenough, S. Pyon, T. Takayama, H. Takagi, Y. Tanaka, L. Taillefer, Nature 458, 743 (2009).

    Google Scholar 

  7. A. Hackl, S. Sachdev, Phys. Rev. B 79, 235124 (2009).

    Google Scholar 

  8. A. Hackl, M. Vojta, S. Sachdev, Phys. Rev. B 81, 045102 (2010).

    Google Scholar 

  9. R. Daou, J. Chang, D. LeBoeuf, O. Cyr-Choinière, F. Laliberté, N. Doiron-Leyraud, B.J. Ramshaw, R. Liang, D.A. Bonn, W.N. Hardy, L. Taillefer, Nature 463, 519 (2010).

    Google Scholar 

  10. A. Hackl, M. Vojta, Phys. Rev. B 80, 220514 (2009).

    Google Scholar 

  11. A. Kondrat, G. Behr, B. Büchner, C. Hess, Phys. Rev. B 83, 092507 (2011).

    Google Scholar 

  12. C. Hess, E. Ahmed, U. Ammerahl, A. Revcolevschi, B. Büchner, The European Physical Journal - Special Topics 188, 103 (2010).

    Google Scholar 

  13. R.P. Huebener, A. Seher, Phys. Rev. 181, 701 (1969).

    Google Scholar 

  14. H.C. Ri, R. Gross, F. Gollnik, A. Beck, R.P. Huebener, P. Wagner, H. Adrian, Phys. Rev. B 50, 3312 (1994).

    Google Scholar 

  15. Z.W. Zhu, Z.A. Xu, X. Lin, G.H. Cao, C.M. Feng, G.F. Chen, Z. Li, J.L. Luo, N.L. Wang, New Journal of Physics 10, 063021 (2008).

    Google Scholar 

  16. M. Matusiak, Z. Bukowski, J. Karpinski, Phys. Rev. B 81, 020510 (2010).

    Google Scholar 

  17. M. Matusiak, Z. Bukowski, J. Karpinski, Phys. Rev. B 83, 224505 (2011).

    Google Scholar 

  18. H. Luetkens, H.H. Klauss, M. Kraken, F.J. Litterst, T. Dellmann, R. Klingeler, C. Hess, R. Khasanov, A. Amato, C. Baines, M. Kosmala, O.J. Schumann, M. Braden, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, B. Büchner, Nat Mater 8, 305 (2009).

    Google Scholar 

  19. H.H. Klauss, W. Wagener, M. Hillberg, W. Kopmann, H. Walf, F.J. Litterst, M. Hücker, B. Büchner, Phys. Rev. Lett. 85, 4590 (2000)

    Google Scholar 

  20. Y. Kamihara, T. Watanabe, M. Hirano, H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008)

    Google Scholar 

  21. Z.A. Ren, W. Lu, J. Yang, W. Yi, X.L. Shen, Z.C. Li, G.C. Che, X.L. Dong, L.L. Sun, F. Zhou, Z.X. Zhao, Chin. Phys. Lett. 25, 2215 (2008)

    Google Scholar 

  22. C. de la Cruz, Q. Huang, J.W. Lynn, J. Li, W.R. II, J.L. Zarestky, H.A. Mook, G.F. Chen, J.L. Luo, N.L. Wang, P. Dai, Nature 453, 899 (2008).

    Google Scholar 

  23. H.H. Klauss, H. Luetkens, R. Klingeler, C. Hess, F.J. Litterst, M. Kraken, M.M. Korshunov, I. Eremin, S.L. Drechsler, R. Khasanov, A. Amato, J. Hamann-Borrero, N. Leps, A. Kondrat, G. Behr, J. Werner, B. Büchner, Phys. Rev. Lett. 101, 077005 (2008).

    Google Scholar 

  24. A. Kondrat, J.E. Hamann-Borrero, N. Leps, M. Kosmala, O. Schumann, A. Köhler, J. Werner, G. Behr, M. Braden, R. Klingeler, B. Büchner, C. Hess, Eur. Phys. J. B 70, 461 (2009).

    Google Scholar 

  25. N. Qureshi, Y. Drees, J. Werner, S. Wurmehl, C. Hess, R. Klingeler, B. Büchner, M.T. Fernández-Díaz, M. Braden, Phys. Rev. B 82, 184521 (2010).

    Google Scholar 

  26. A.J. Drew, C. Niedermayer, P.J. Baker, F.L. Pratt, S.J. Blundell, T. Lancaster, R.H. Liu, G. Wu, X.H. Chen, I. Watanabe, V.K. Malik, A. Dubroka, M. Rossle, K.W. Kim, C. Baines, C. Bernhard, Nat Mater 8, 310 (2009).

    Google Scholar 

  27. N. Ni, S.L. Bud’ko, A. Kreyssig, S. Nandi, G.E. Rustan, A.I. Goldman, S. Gupta, J.D. Corbett, A. Kracher, P.C. Canfield, Phys. Rev. B 78, 014507 (2008)

    Google Scholar 

  28. P. Prelovšek, I. Sega, T. Tohyama, Physical Review B (Condensed Matter and Materials Physics) 80, 014517 (2009).

    Google Scholar 

  29. C. Hess, A. Kondrat, A. Narduzzo, J.E. Hamann-Borrero, R. Klingeler, J. Werner, G. Behr, B. Büchner, EPL (Europhysics Letters) 87, 17005 (2009).

    Google Scholar 

  30. M.A. McGuire, A.D. Christianson, A.S. Sefat, B.C. Sales, M.D. Lumsden, R. Jin, E.A. Payzant, D. Mandrus, Y. Luan, V. Keppens, V. Varadarajan, J.W. Brill, R.P. Hermann, M.T. Sougrati, F. Grandjean, G.J. Long, Physical Review B (Condensed Matter and Materials Physics) 78, 094517 (2008).

    Google Scholar 

  31. L. Wang, U. Köhler, N. Leps, A. Kondrat, M. Nale, A. Gasparini, A. de Visser, G. Behr, C. Hess, R. Klingeler, B. Büchner, Phys. Rev. B 80, 094512 (2009).

    Google Scholar 

  32. Y. Nakai, K. Ishida, Y. Kamihara, M. Hirano, H. Hosono, Journal of the Physical Society of Japan 77, 073701 (2008).

    Google Scholar 

  33. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)

    Google Scholar 

  34. J.M. Tranquada, H. Woo, T.G. Perring, H. Goka, G.D. Gu, G. Xu, M. Fujita, K. Yamada, Nature 429, 534 (2004).

    Google Scholar 

  35. V. Hinkov, D. Haug, B. Fauqu, P. Bourges, Y. Sidis, A. Ivanov, C. Bernhard, C.T. Lin, B. Keimer, Science 319, 597 (2008).

    Google Scholar 

  36. M. Fujita, H. Goka, K. Yamada, J.M. Tranquada, L.P. Regnault, Phys. Rev. B 70, 104517 (2004).

    Google Scholar 

  37. J.M. Tranquada, G.D. Gu, M. Hücker, Q. Jie, H.J. Kang, R. Klingeler, Q. Li, N. Tristan, J.S. Wen, G.Y. Xu, Z.J. Xu, J. Zhou, M. v. Zimmermann, Phys. Rev. B 78, 174529 (2008).

    Google Scholar 

  38. G. Xu, J.M. Tranquada, T.G. Perring, G.D. Gu, M. Fujita, K. Yamada, Phys. Rev. B 76, 014508 (2007).

    Google Scholar 

  39. J. Fink, E. Schierle, E. Weschke, J. Geck, D. Hawthorn, V. Soltwisch, H. Wadati, H.H. Wu, H.A. Dürr, N. Wizent, B. Büchner, G.A. Sawatzky, Phys. Rev. B 79, 100502 (2009).

    Google Scholar 

  40. J. Fink, V. Soltwisch, J. Geck, E. Schierle, E. Weschke, B. Büchner, Phys. Rev. B 83, 092503 (2011).

    Google Scholar 

  41. B. Büchner, M. Braden, M. Cramm, W. Schlabitz, O. Hoffels, W. Braunisch, R. Müller, G. Heger, D. Wohlleben, Physica C: Superconductivity 185–189, 903 (1991).

    Google Scholar 

  42. B. Büchner, M. Cramm, M. Braden, W. Braunisch, O. Hoffels, W. Schnelle, R. Müller, A. Freimuth, W. Schlabitz, G. Heger, D.I. Khomskii, D. Wohlleben, Europhys. Lett. 21, 953 (1993)

    Google Scholar 

  43. B. Büchner, M. Breuer, A. Freimuth, A.P. Kampf, Phys. Rev. Lett. 73, 1841 (1994)

    Google Scholar 

  44. J.D. Axe, A.H. Moudden, D. Hohlwein, D.E. Cox, K.M. Mohanty, A.R. Moodenbaugh, Y. Xu, Phys. Rev. Lett. 62, 2751 (1989)

    Google Scholar 

  45. M. Hücker, M. v. Zimmermann, G.D. Gu, Z.J. Xu, J.S. Wen, G. Xu, H.J. Kang, A. Zheludev, J.M. Tranquada, Phys. Rev. B 83, 104506 (2011).

    Google Scholar 

  46. S.B. Wilkins, M.P.M. Dean, J. Fink, M. Hücker, J. Geck, V. Soltwisch, E. Schierle, E. Weschke, G. Gu, S. Uchida, N. Ichikawa, J.M. Tranquada, J.P. Hill, Phys. Rev. B 84, 195101 (2011).

    Google Scholar 

  47. L. Li, N. Alidoust, J.M. Tranquada, G.D. Gu, N.P. Ong, Phys. Rev. Lett. 107, 277001 (2011).

    Google Scholar 

  48. J.M. Tranquada, J.D. Axe, N. Ichikawa, Y. Nakamura, S. Uchida, B. Nachumi, Phys. Rev. B 54, 7489 (1996)

    Google Scholar 

  49. M. Hücker, G. Gu, J. Tranquada, M. Zimmermann, H.H. Klauss, N. Curro, M. Braden, B. Büchner, Physica C: Superconductivity 460–462, 170 (2007).

    Google Scholar 

  50. C. Hess, B. Büchner, U. Ammerahl, A. Revcolevschi, Phys. Rev. B 68, 184517 (2003)

    Google Scholar 

  51. L. Pintschovius, Festkörperprobleme 30, 183 (1990)

    Google Scholar 

  52. B. Keimer, R.J. Birgeneau, A. Cassanho, Y. Endoh, M. Greven, M.A. Kastner, G. Shirane, Z. Phys. B 91, 373 (1993)

    Google Scholar 

Download references

Acknowledgements

Support by the Deutsche Forschungsgemeinschaft through the Research Unit FOR538 (Grant No. BU887/4) and the Priority Programme SPP1458 (Grant No. GR3330/2) is gratefully acknowledged. This work would not have been possible without contributions by U. Ammerahl, G. Behr, B. Büchner, A. Revcolevschi, and, in particular, A. Kondrat and E. Ahmed. Furthermore, the author thanks D. Bombor and F. Steckel for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Hess, C. (2013). Nernst Effect of Iron Pnictide and Cuprate Superconductors: Signatures of Spin Density Wave and Stripe Order. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_11

Download citation

Publish with us

Policies and ethics