Skip to main content

Alternative Strategies for Thermoelectric Materials Development

  • Conference paper
  • First Online:
New Materials for Thermoelectric Applications: Theory and Experiment

Abstract

The presently used thermoelectric materials, as Bi2Te3-Sb2Te3,PbTe and Si1−xGex,were developed up to the early 1960s. However, they only show a maximum ZT∼1, which leads to device efficiencies that are not big enough to compete, for instance, with the traditional cooling compression systems. The development of the “Phonon Glass and Electron Crystal” (PGEC) concept, in the middle 1990s, led to the discovery of a large number of new and improved thermoelectric materials. Several strategies were used during these years for this research. In this contribution a review on the different approaches for thermoelectric materials identification and development is made. A special focus will be the recent strategies used in our institutes to identify new thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

e::

charge of electron

kB::

Boltzmann’s constant

m::

effective mass

n::

carrier concentration

q::

charge of a carrier

r::

scattering parameter

zT::

material figure of merit

ZT::

device figure of merit

EG::

energy gap

EF::

Fermi energy

I::

electrical current

L0::

Lorentz number

M::

mean atomic weight

PGEC::

Phonon Glass Electron Crystal

Q::

heat quantity

S::

entropy

T::

absolute temperature

TC::

crystallization temperature

Tg::

glass transition temperature

U::

weighted mobility

V::

electrical potential

α ::

Seebeck coefficient

α2σ::

power factor

β ::

material parameter

ε ::

mass fluctuation parameter

η ::

reduced Fermi energy

λ ::

thermal conductivity

λ e ::

electronic contribution to the thermal conductivity

λ L ::

lattice (phonon) contribution to the thermal conductivity

λ min ::

minimum thermal conductivity

μ ::

mobility

ρ ::

electrical resistivity

ρ0::

density

σ ::

electrical conductivity

τg:

Thomson coefficient

Π ::

Peltier coefficient

\(\overline{\Delta X} :\) :

average electronegativity difference

References

  1. Godart C, Gonçalves AP, Lopes EB, Villeroy B (2009) Role of structures on thermal conductivity in thermoelectric materials. In: Zlatić V, Hewson A (eds) Properties and applications of thermoelectric materials. NATO ASI series B – Physics and biophysics. Springer, Netherlands, pp 19–49

    Google Scholar 

  2. Seebeck TJ (1822–1823) Magnetische plarisation der matalle und Erze durch temperatur-differenz. Abbandlungen der Königlichen Akademie der Wissenschaften in Berlin, pp 265–373

    Google Scholar 

  3. Telkes M (1938) Westinghouse research report R-94264-B

    Google Scholar 

  4. Oersted HC (1820) Experimenta circa effectum conflictus electrici in acum magneticam. Typis Schultzianis/Hafniae, Copenhagen

    Google Scholar 

  5. Oersted HC (1823) Nouvelles expériences de M. Seebeck sur les actions électro-magnétiques. Annales de Chimie et de Physique 22:199–201

    Google Scholar 

  6. Peltier JCA (1834) Nouvelles experiences sur la caloricité des courants electriques. Annales de chimie 56:371–386

    Google Scholar 

  7. Lenz HFE (1838) The freezing of water by galvanic current, library for reading, journal of literature, science, art, industry news and fashion, vol 28, Part III. Science and Art, pp 44–48. (in Russian)

    Google Scholar 

  8. Thomson W (1851) On a mechanical theory of thermo-electric currents, Proc R Soc Edinb 3:91–98

    Google Scholar 

  9. Altenkirch E (1909) Uber den Nutzcffekt der thermosaulc. Phys Zeitschrift 10:560–568

    MATH  Google Scholar 

  10. Altenkirch E (1911) Electrothermische kaltecrzengung und reversible electrische heizung. Phys Zeitschrift 12:920–924

    MATH  Google Scholar 

  11. Ioffe AF (1932) The problem of new energy sources, The socialist reconstruction and science, N1, p 23. (in Russian)

    Google Scholar 

  12. Telks M (1947) The efficiency of thermoelectric generators. Int J Appl Phys 18:1116–1127

    Article  ADS  Google Scholar 

  13. Ioffe AF (1950) Energetic basis of thermoelectrical cells from semiconductors. Academy of Sciences of the USSR, Moscow. (in Russian)

    Google Scholar 

  14. Ioffe AV, Ioffe AF (1954) Some relationships about the value of the thermal conductivity of semiconductors. Dokl Akad Nauk SSSR 97:821. (in Russian)

    Google Scholar 

  15. Ioffe AF, Kolomoets NV, Stil’bans LS (1956) About increasing efficiency of semiconductor termocouples. Dokl Akad Nauk SSSR 106:981. (in Russian)

    Google Scholar 

  16. Goldsmid HJ, Douglas RW (1954) The use of semiconductors in thermoelectric refrigeration. Br J Appl Phys 5:386–390

    Article  ADS  Google Scholar 

  17. Goldsmid HJ (2010) Introduction to thermoelectricity. Springer, Berlin

    Google Scholar 

  18. Wood C (1988) Materials for thermoelectric energy conversion. Rep Prog Phys 51:459–539

    Article  ADS  Google Scholar 

  19. VedernikovMV, Iordanishvili EK (1998) Proceedings of the 17th international conference on thermoelectrics, Lisbon, pp 37–42

    Google Scholar 

  20. Schwartz N, Tantraporn W, van der Grinten WJ (1963) Selection of melting points and energy gaps for optimized performance of the thermoelectric materials. Adv Energy Convers 3:419–425

    Article  Google Scholar 

  21. Chasmar RP, Stratton R (1959) The thermoelectric figure of merit and its relation to thermoelectric generators. J Electron Control 7:52–72

    Article  Google Scholar 

  22. Goldsmidt HJ (1964) Thermoelectric refrigeration. Plenum, New York

    Google Scholar 

  23. Dennis JH (1961) Anisotropy of thermoelectric power in bismuth telluride. Technical Report 377, Massachusetts Institute of Technology, Research Laboratory of Electronics

    Google Scholar 

  24. Ellet MR, Cuff KF, Kuglin CD (1961) Bull Am Phys Soc 6:18

    Google Scholar 

  25. Keyes RW (1959) High-temperature thermal conductivity of isolating crystals: relationship to the melting point. Phys Rev 115:564–567

    Article  ADS  Google Scholar 

  26. Tavernier J (1959) Sur le calcul de la conductivité thermique des structures désordonnées. Comptes rendus hebdomadaires des séances de l’Académie des sciences 248:3427. (in French)

    Google Scholar 

  27. Slack GA (1995) New materials and performance limits for thermoelectric cooling. In: Rowe DM (ed) CRC handbook of thermoelectrics. CRC, Boca Raton

    Google Scholar 

  28. Mahan GD (1989) Figure of merit for thermoelectrics. J Appl Phys 65:1578–1583

    Article  ADS  Google Scholar 

  29. Slack GA (1979) The thermal conductivity of non-metallic crystals. In: Seitz F, Turnbull D, Ehrenreich H (eds) Solid state physics, vol 34. Academic, New York

    Google Scholar 

  30. Cahill DG, Watson SK, Pohl RO (1992) Lower limit to the thermal conductivity of disordered crystals. Phys Rev B 46:6131–6140

    Article  ADS  Google Scholar 

  31. Snyder GJ, Toberer ES (2008) Complex thermoelectric materials. Nat Mater 7:105–114

    Article  ADS  Google Scholar 

  32. Sootsman JR, Chung DY, Kanatzidis MG (2009) New and old concepts in thermoelectric materials. Angew Chem Int Ed 48:8616–8639

    Article  Google Scholar 

  33. Kleinke H (2010) New bulk materials for thermoelectric power generation: clathrates and complex antimonides. Chem Mater 22:604–611

    Article  Google Scholar 

  34. Vineis CJ, Shakouri A, Majumdar A, Kanatzidis MG (2010) Nanostructured thermoelectrics: big efficiency gains from small features. Adv Mater 22:3970–3980

    Article  Google Scholar 

  35. Nielsch K, Bachmann J, Kimling J, Böttner H (2011) Thermoelectric nanostructures: from physical model systems towards nanograined composites. Adv Energy Mater 1:713–731

    Article  Google Scholar 

  36. Slack GA (1997) Design concepts for improved thermoelectric materials. In: Tritt TM, Kanatzidis MG, Lyon HB, Maham GD (eds) Thermoelectric materials – new directions and approaches. Materials research society symposium proceedings, vol 478. Materials Research Society, Warrendale

    Google Scholar 

  37. Nolas GS, Cohn JL, Slack GA, Schujman SB (1998) Semiconducting Ge clathrates: promising candidates for thermoelectric applications. Appl Phys Lett 178:178–180

    Article  ADS  Google Scholar 

  38. Morelli DT, Meisner GP (1975) Low temperature properties of the filled skutterudite CeFe4Sb12. J Appl Phys 77:3777–3781

    Article  ADS  Google Scholar 

  39. Slack GA, Fleurial J-P, Caillat T (1996) The thermoelectric properties of skutterurdites. Nav Res Rev 68:23–30

    Google Scholar 

  40. Chan JY, Olmstead MM, Kauzlarich SM, Webb DJ (1998) Structure and ferromagnetism of the rare-earth zintl compounds: Yb14MnSb11and Yb14MnBi11. Chem Mater 10:3583–3588

    Article  Google Scholar 

  41. Brown SR, Kauzlarich SM, Gascoin F, Snyder GJ (2006) Yb14MnSb11: new high efficiency thermoelectric material for power generation. Chem Mater 18:1873–1877

    Article  Google Scholar 

  42. Mayer HW, Mikhail I, Schbert K (1978) Phases of ZnSbNand CdSbNmixtures. J Less-Common Met 59:43–52. (in German)

    Article  Google Scholar 

  43. Caillat T, Fleurial JP, Borshchevsky A (1997) Preparation and thermoelectric properties of semiconducting Zn4Sb3. J Phys Chem Solids 58:1119–1125

    Article  ADS  Google Scholar 

  44. Snyder GJ, Christensen M, Nishibori E, Caillat T, Iversen BB (2004) Disordered zinc in Zn(4)Sb(3) with phonon-glass and electron-crystal thermoelectric properties. Nat Mater 3:458–463

    Article  ADS  Google Scholar 

  45. Jeitschko W (1970) Transition metal stannides with MgAgAs and MnCu2Al-type structure. Metall Trans 1:3159

    Google Scholar 

  46. Sakurada S, Shutoh N (2005) Effect of Ti substitution on the thermoelectric properties of (Zr,Hf)NiSn half-Heusler compounds. Appl Phys Lett 86:082105

    Article  ADS  Google Scholar 

  47. Fedorov MI, Pshenaj-Severin DA, Zaitsev VK, Sano S, Vedernikov MV (2003) Features of conduction mechanism in n-type Mg2Si1 − xSnxsolid solutions. In: Proceedings: 22nd international conference on thermoelectrics, ICT2003, La Grand Motte, Aug, p 142

    Google Scholar 

  48. Zaitsev VK, Fedorov MI, Gurieva EA, Eremin IS, Konstantinov PP, Samunin AYu, Vedernikov MV (2006) Highly effective Mg2Si1 − xSnxthermoelectrics. Phys Rev B 74:045207

    Article  ADS  Google Scholar 

  49. Gambino RJ, Grobman WD, Toxen AM (1973) Anomalously large thermoelectric cooling figure of merit in the Kondo systems CePd3and Celn3. Appl Phys Lett 22:506–507

    Article  ADS  Google Scholar 

  50. Slack GA, Hussain MA (1991) The maximum possible conversion efficiency of silicon-germanium thermoelectric generators. J Appl Phys 70:2694–2718

    Article  ADS  Google Scholar 

  51. Harman TC, Taylor PJ, Walsh MP, LaForge BE (2002) Quantum dot superlattice thermoelectric materials and devices. Science 297:2229–2232

    Article  ADS  Google Scholar 

  52. Hsu KF, Loo S, Guo F, Chen W, Dyck JS, Uher C, Hogan T, Polychroniadis EK, Kanatzidis MG (2004) Cubic AgPbmSbTe 2 + m: bulk thermoelectric materials with high figure of merit. Science 303:818–821

    Article  ADS  Google Scholar 

  53. Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47:12727–12731

    Article  ADS  Google Scholar 

  54. Hicks LD, Harman TC, Dresselhaus MS (1993) Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials. Appl Phys Lett 63:3230–3232

    Article  ADS  Google Scholar 

  55. Venkatasubramanian R, Siivola E, Colpitts T, O’Quinn B (2001) Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413:597–602

    Article  ADS  Google Scholar 

  56. Poudel B, Hao Q, Ma Y, Lan YC, Minnich A, Yu B, Yan X, Wang D, Muto A, Vashaee D, Chen XY, Liu JM, Dresselhaus MS, Chen G, Ren Z (2008) High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320:634–638

    Article  ADS  Google Scholar 

  57. Humer S, Bauer E, Michor H, Grytsiv A, Falmbigl M, Chen M, Podloucky R, Rogl P (2011) From superconductivity towards thermoelectricity: Germanium based skutterudites. In: Proceedings of the NATO ADVANCED RESEARCH WORKSHOP, new materials for thermoelectric applications: theory and experiment, Hvar, Croatia, 19–25 Sept 2011

    Google Scholar 

  58. Gonçalves AP, Lopes EB, Rouleau O, Godart C (2010) Conducting glasses as new potential thermoelectric materials: the Cu–Ge–Te case. J Mater Chem 20:1516–1521

    Article  Google Scholar 

  59. Gonçalves AP, Delaizir G, Lopes EB, Ferreira LM, Rouleau O, Godart C (2011) Chalcogenide glasses as prospective thermoelectric materials. J Electron Mater 40:1015–1017

    Article  ADS  Google Scholar 

  60. Gonçalves AP, Lopes EB, Delaizir G, Vaney JB, Lenoir B, Piarristeguy A, Pradel A, Monnier J, Ochin P, Godart C Semiconducting glasses: a new class of thermoelectric materials? J Solid State Chem. submitted

    Google Scholar 

  61. Tanaka K, Shimakawa K (2011) Amorphous chalcogenide semiconductors and related materials. Springer, New York, pp 11–12

    Book  Google Scholar 

  62. Kastner M (1972) Bonding bands, lone-pair bands, and impurity states in chalcogenide semiconductors. Phys Rev Lett 28:355–357

    Article  ADS  Google Scholar 

  63. El-Oyoun MA (2000) A study of the crystallization kinetics of Ge20Te 80chalcogenide glass. J Phys D Appl Phys 33:2211–2217

    Article  ADS  Google Scholar 

  64. Parthasarathy G, Bandyopadhyay AK, Asokan S, Gopal ESR (1984) Effect of pressure on the electrical-resistivity of bulk Ge20Te80 glass. Solid State Commun 51:195–197

    Article  ADS  Google Scholar 

  65. Ferhat A, Ollitrault-Fichet R, Mastelaro V, Bénazeth S, Rivet J (1992) Etude des verres du système Ag-Ge-Te. J de Physique IV 2:C2-201–C2-206

    Google Scholar 

  66. Ramesh K, Asokan S, Sangunni KS, Gopal ESR (1996) Compositional dependence of high pressure resistivity behaviour of Cu-Ge-Te glasses. Phys Chem Glasses 37:217–220

    Google Scholar 

  67. Ramesh K, Asokan S, Sangunni KS, Gopal ESR (1999) Electrical resistivity behavior of Ag-Ge-Te glasses under pressure at different temperature: the influence of bonding and topological thresholds. J Phys Condens Matter 11:3897–3906

    Article  ADS  Google Scholar 

  68. Rátkai L, Gonçalves AP, Delaizir G, Godart C, Kaban I, Beuneu B, Jóvári P (2011) The Cu and Te coordination environments in Cu-doped Ge–Te glasses. Solid State Commun 151:1524–1527

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the by-lateral French-Portuguese GRICES/CNRS 2007–2008 program, European COST P16 program and FCT, Portugal, under contract nr. PTDC/CTM/102766/2008. Authors would like to thank the French National Agency (ANR) in the frame of its program “PROGELEC 2011” (Verre Thermo-Générateur “VTG”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Gonçalves .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Gonçalves, A.P., Godart, C. (2013). Alternative Strategies for Thermoelectric Materials Development. In: Zlatic, V., Hewson, A. (eds) New Materials for Thermoelectric Applications: Theory and Experiment. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4984-9_1

Download citation

Publish with us

Policies and ethics