Skip to main content

“Life Without Water”: The Sleeping Chironomid and Other Anhydrobiotic Invertebrates and Their Utilization in Astrobiology

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

Abstract

Anhydrobiosis is a state which allows complex organisms to withstand complete desiccation by effective preservation of biological molecules. Among the metazoans, the anhydrobiotic forms are found only in invertebrates and include representatives of five taxa: insects, crustaceans, rotifers, tardigrades, and nematodes. In dry state, in addition to survival of complete desiccation, these organisms demonstrate high cross-resistance to other abiotic stresses including extreme temperature fluctuations, organic solvents, vacuum, and even ionizing radiation. The anhydrobiotic invertebrates are an attractive model organisms for astrobiology in order to understand limits of resistance of terrestrial life to space environment and evaluation of possibility of interplanetary transfer of life because they have organized tissues, i.e., genetic and biochemical machineries similar to vertebrates. In this chapter, we review the main groups of anhydrobiotic invertebrates, outline aspects of their resistance to excessive abiotic stresses and chronology of utilization this group of organisms in outer space astrobiological experiments.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alekseev V (2007) Diapause in crustaceans: peculiarities of induction. In: Alekseev V, Stasio B, Gilbert J (eds) Diapause in aquatic invertebrates theory and human use. Springer, Dordrecht, pp 29–63

    Chapter  Google Scholar 

  • Baglioni P, Sabbatini M, Horneck G (2008) Astrobiology experiments in low earth orbit: facilities, instrumentation, and results. Complete course in astrobiology. Wiley/GmbH & Co, KGaA

    Google Scholar 

  • Baranov VM, Novikova ND, Polikarpov NA, Sychev VN, Levinskikh MA, Alekseev VR, Okuda T, Sugimoto M, Gusev OA, Grigor’ev AI (2009) The biorisk experiment: 13-month exposure of resting forms of organism on the outer side of the Russian segment of the international space station: preliminary results. Dokl Biol Sci 426:267–270

    Article  Google Scholar 

  • Brack A, Horneck G, Wynn-Williams D (2001) Exo/astrobiology in Europe. Orig Life Evol B 31:459–480

    Article  Google Scholar 

  • Caprioli M, Ricci C (2001) Recipes for successful anhydrobiosis in bdelloid rotifers. Hydrobiologia 446:13–17

    Article  Google Scholar 

  • Chen SB, Glazer I (2004) Effect of rapid and gradual increase of osmotic stress on survival of entomopathogenic nematodes. Phytoparasitica 32:486–497

    Article  Google Scholar 

  • Clegg JS (2007) Protein stability in artemia embryos during prolonged anoxia. Biol Bull-Us 212:74–81

    Article  Google Scholar 

  • Clegg JS, Van Hoa N, Sorgeloos P (2001) Thermal tolerance and heat shock proteins in encysted embryos of artemia from widely different thermal habitats. Hydrobiologia 466:221–229

    Article  Google Scholar 

  • Crowe LM (2002) Lessons from nature: the role of sugars in anhydrobiosis. Comp Biochem Phys A 131:505–513

    Article  Google Scholar 

  • Crowe LM, Crowe JH (1992) Anhydrobiosis: a strategy for survival. Adv Space Res 12:239–247

    Article  ADS  Google Scholar 

  • Crowe JH, Madin KA (1974) Anhydrobiosis in tardigrades and nematodes. T Am Microsc Soc 93:513–524

    Article  Google Scholar 

  • Crowe JH, Madin KAC (1975) Anhydrobiosis in nematodes - evaporative water-loss and survival. J Exp Zool 193:323–333

    Article  Google Scholar 

  • Crowe JH, Madin KAC, Loomis SH (1977) Anhydrobiosis in nematodes - metabolism during resumption of activity. J Exp Zool 201:57–63

    Article  Google Scholar 

  • Crowe JH, Oliver AE, Tablin F (2002) Is there a single biochemical adaptation to anhydrobiosis? Integr Comp Biol 42:497–503

    Article  Google Scholar 

  • Darby BJ, Neher DA (2006) Estimating genus-specific anhydrobiosis of desert nematodes from field soils. J Nematol 38:269

    Google Scholar 

  • de Vera JP, Ott S, de la Torre R, Sancho LG, Horneck G, Rettberg P, Ascaso C, de los Rios A, Wierzchos J, Cockell C, Olsson K, Frias JM, Demets R (2009) Esa experiment biopan-6-germination and growth capacity of lichen symbiont cells and ascospores after space exposure. Orig Life Evol B 39:359–360

    Google Scholar 

  • Denekamp N, Suga K, Hagiwara A, Reinhardt R, Lubzens E (2010) A role for molecular studies in unveiling the pathways for formation of rotifer resting eggs and their survival during dormancy. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 109–132

    Chapter  Google Scholar 

  • Franca MB, Panek AD, Eleutherio EC (2007) Oxidative stress and its effects during dehydration. Comp Biochem Physiol A Mol Integr Physiol 146:621–631

    Article  Google Scholar 

  • Gaubin Y, Pianezzi B, Gasset G, Plannel H, Kovalev EE (1986) Stimulating effect of space flight factors on artemia cysts: comparison with irradiation by gamma rays. Aviat Space Environ Med 57:583–590

    Google Scholar 

  • Gaubin Y, Prévost MC, Cariven C, Pianezzi B, Planel H, Soleilhavoup JP (1996) Enzyme activities and membrane lipids in artemia cysts after a long duration space flight. Adv Space Res 18:221–227

    Article  ADS  Google Scholar 

  • Gladyshev E, Meselson M (2008) Extreme resistance of bdelloid rotifers to ionizing radiation. Proc Natl Acad Sci U S A 105:5139–5144

    Article  ADS  Google Scholar 

  • Gladyshev EA, Meselson M, Arkhipova IR (2008) Massive horizontal gene transfer in bdelloid rotifers. Science 320:1210–1213

    Article  ADS  Google Scholar 

  • Glasheen JS, Hand SC (1988) Anhydrobiosis in embryos of the brine shrimp artemia - characterization of metabolic arrest during reductions in cell-associated water. J Exp Biol 135:363–380

    Google Scholar 

  • Goyal K, Pinelli C, Maslen SL, Rastogi RK, Stephens E, Tunnacliffe A (2005a) Dehydration-regulated processing of late embryogenesis abundant protein in a desiccation-tolerant nematode. FEBS Lett 579:4093–4098

    Article  Google Scholar 

  • Goyal K, Walton LJ, Browne JA, Burnell AM, Tunnacliffe A (2005b) Molecular anhydrobiology: identifying molecules implicated in invertebrate anhydrobiosis. Integr Comp Biol 45:702–709

    Article  Google Scholar 

  • Grewal PS, Bornstein-Forst S, Burnell AM, Glazer I, Jagdale GB (2006) Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis, and anhydrobiosis in entomopathogenic nematodes. Biol Control 38:54–65

    Article  Google Scholar 

  • Gusev O, Cornette R, Kikawada T, Okuda T (2010) Expression of heat shock protein-coding genes associated with anhydrobiosis in an African chironomid polypedilum vanderplanki. Cell Stress Chaperones 16(1):81–90

    Article  Google Scholar 

  • Hengherr S, Brummer F, Schill RO (2008) Anhydrobiosis in tardigrades and its effects on longevity traits. J Zool 275:216–220

    Article  Google Scholar 

  • Hengherr S, Worland MR, Reuner A, Brummer F, Schill RO (2009) High-temperature tolerance in anhydrobiotic tardigrades is limited by glass transition. Physiol Biochem Zool 82:749–755

    Article  Google Scholar 

  • Horikawa DD, Sakashita T, Katagiri C, Watanabe M, Kikawada T, Nakahara Y, Hamada N, Wada S, Funayama T, Higashi S, Kobayashi Y, Okuda T, Kuwabara M (2006) Radiation tolerance in the tardigrade milnesium tardigradum. Int J Radiat Biol 82:843–848

    Article  Google Scholar 

  • Horikawa DD, Kunieda T, Abe W, Watanabe M, Nakahara Y, Yukuhiro F, Sakashita T, Hamada N, Wada S, Funayama T, Katagiri C, Kobayashi Y, Higashi S, Okuda T (2008) Establishment of a rearing system of the extremotolerant tardigrade ramazzottius varieornatus: a new model animal for astrobiology. Astrobiology 8:549–556

    Article  ADS  Google Scholar 

  • Horneck G (1982) Response of microorganisms to free space environment. Biol Cell 45:471

    Google Scholar 

  • Horneck G (2002) Meteorites as potential source of microorganisms on early earth and mars. Geochim Cosmochim Ac 66:341

    Google Scholar 

  • Horneck G (2003) Anhydrobiosis, a capacity for long-term survival of hostile environmental conditions. Geochim Cosmochim Ac 67:157

    ADS  Google Scholar 

  • Horneck G, Brack A (1992) Study of the origin, evolution and distribution of life with emphasis on exobiology experiments in earth orbit. Adv Space Biol Med 2:229–262

    Article  Google Scholar 

  • Horneck G, Bucker H (1986) Can microorganisms withstand the multistep trial of interplanetary transfer - considerations and experimental approaches. Orig Life Evol Biosphere 16:414–415

    Article  Google Scholar 

  • Horneck G, Bucker H, Reitz G, Requardt H, Dose K, Martens KD, Mennigmann HD, Weber P (1984) Microorganisms in the space environment. Science 225:226–228

    Article  ADS  Google Scholar 

  • Iwasaki T (1964) Sensitivity of artemia eggs to the gamma-irradiation. I. Hatchability of encysted dry eggs. J Radiat Res (Tokyo) 29:69–75

    Article  Google Scholar 

  • Jonsson KI (2005) The evolution of life histories in holo-anhydrobiotic animals: a first approach. Integr Comp Biol 45:764–770

    Article  Google Scholar 

  • Jonsson KI, Harms-Ringdahl M, Torudd J (2005) Radiation tolerance in the eutardigrade richtersius coronifer. Int J Radiat Biol 81:649–656

    Article  Google Scholar 

  • Jonsson KI, Rabbow E, Schill RO, Harms-Ringdahl M, Rettberg P (2008) Tardigrades survive exposure to space in low earth orbit. Curr Biol 18:R729–R731

    Article  Google Scholar 

  • Keilin D (1959) The Leeuwenhoek lecture - the problem of anabiosis or latent life - history and current concept. P Roy Soc Lond B Bio 150:149–191

    Article  ADS  Google Scholar 

  • Kikawada T, Nakahara Y, Kanamori Y, Iwata K, Watanabe M, McGee B, Tunnacliffe A, Okuda T (2006) Dehydration-induced expression of lea proteins in an anhydrobiotic chironomid. Biochem Biophys Res Commun 348:56–61

    Article  Google Scholar 

  • Marotta R, Leasi F, Uggetti A, Ricci C, Melone G (2010) Dry and survive: morphological changes during anhydrobiosis in a bdelloid rotifer. J Struct Biol 171:11–17

    Article  Google Scholar 

  • May RM, Maria M, Guimard J (1964) Action diffréntielle des rayons x et ultraviolets sur le tardigrade macrobiotus areolatus, a l’ état actif et desséché. Bulletin Biologique de la France et de la Belgique 98:349–367

    Google Scholar 

  • McLennan AG (2009a) Ametabolic embryos of artemia franciscana accumulate DNA damage during prolonged anoxia. J Exp Biol 212:785–789

    Article  Google Scholar 

  • McLennan AG (2009b) Ametabolic embryos of artemia franciscana accumulate DNA damage during prolonged anoxia. J Exp Biol 212:785–789

    Article  Google Scholar 

  • Meyer C, Stoffler D, Misgaiski M, Fritz J, Moeller R, Rabbow E, Horneck G, De Vera JP, Cockell C, Hornemann U (2008) Shock experiments in support of the lithopanspermia theory: the influence of host rock composition, temperature and shock pressure on the survival rate of endolithic and epilithic microorganisms. Int J Astrobiol 7, 1:70

    Google Scholar 

  • Neumann S, Reuner A, Brummer F, Schill RO (2009) DNA damage in storage cells of anhydrobiotic tardigrades. Comp Biochem Physiol A Mol Integr Physiol 153:425–429

    Article  Google Scholar 

  • Nicholas WL, Stewart AC (1989) Experiments on anhydrobiosis in acrobeloides-nanus (Deman, 1880) Anderson, 1986 (nematoda). Nematologica 35:489–491

    Article  Google Scholar 

  • Novikova N, Gusev O, Polikarpov N, Deshevaya E, Levinskikh M, Alekseev V, Okuda T, Sugimoto M, Sychev V, Grigoriev A (2011) Survival of dormant organisms after long-term exposure to the space environment. Acta Astronautica, 68, 9–10, 1574–1580. http://www.sciencedirect.com/science/article/pii/S0094576510001839

  • Planel H, Gaubin Y, Pianezzi B, Gasset G (1989) Space environmental factors affecting responses to radiation at the cellular level. Adv Space Res 9:157–160

    Article  ADS  Google Scholar 

  • Planel H, Gaubin Y, Pianezzi B, Delpoux M, Bayonove J, Bes JC, Heilmann C, Gasset G (1994) Influence of a long duration exposure, 69 months, to the space flight factors in artemia cysts, tobacco and rice seeds. Adv Space Res 14:21–32

    Article  ADS  Google Scholar 

  • Pouchkina-Stantcheva N, Tunnacliffe A (2004) Molecular studies of anhydrobiosis in bdelloid rotifers. Integr Comp Biol 44:624

    Google Scholar 

  • Qiu Z, MacRae T (2010) A molecular overview of diapause in embryos of the crustacean, artemia franciscana. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 165–187

    Chapter  Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. ISJ 4:65–81

    Google Scholar 

  • Rebecchi L, Cesari M, Altiero T, Frigieri A, Guidetti R (2009) Survival and DNA degradation in anhydrobiotic tardigrades. J Exp Biol 212:4033–4039

    Article  Google Scholar 

  • Ricci C, Caprioli M (2005) Anhydrobiosis in bdelloid species, populations and individuals. Integr Comp Biol 45:759–763

    Article  Google Scholar 

  • Riley IT, Shedley D, Sivasithamparam K (2001) Anhydrobiosis and reproduction in anguina australis. Australas Plant Path 30:361–364

    Article  Google Scholar 

  • Saeed M, Roessner J (1984) Anhydrobiosis in 5 species of plant associated nematodes. J Nematol 16:119–124

    Google Scholar 

  • Schill R (2010) Anhydrobiotic abilities of tardigrades. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 133–146

    Chapter  Google Scholar 

  • Shinokawa T (1997) Effect of dry and wet soil conditions on hatching rate in Asian tadpole shrimp, triops granarius. Jpn J Appl Entomol Z 41:237–239

    Article  Google Scholar 

  • Shishov VA (2008) Determination of spacecraft and phobos parameters of motion in the phobos-grunt project. Solar Syst Res 42:319–328

    Article  ADS  Google Scholar 

  • Somme L (1996) Anhydrobiosis and cold tolerance in tardigrades. Eur J Entomol 93:349–357

    Google Scholar 

  • Stoffler D, Horneck G, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Artemieva NA (2007) Experimental evidence for the potential impact ejection of viable microorganisms from mars and mars-like planets. Icarus 186:585–588

    Article  ADS  Google Scholar 

  • Thompson JP (1990) Treatments to eliminate root-lesion nematode (pratylenchus-thornei sher and allen) from a vertisol. Nematologica 36:123–127

    Article  Google Scholar 

  • Tunnacliffe A, Lapinski J (2003) Resurrecting van leeuwenhoek’s rotifers: a reappraisal of the role of disaccharides in anhydrobiosis. Philos T Roy Soc B 358:1755–1771

    Article  Google Scholar 

  • Tunnacliffe A, Hincha D, Leprince O, Macherel D (2010) Lea proteins: versatility of form and function. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 91–108

    Chapter  Google Scholar 

  • Vanvlasselaer E, De Meester L (2010) An exploratory review on the molecular mechanisms of diapause termination in the waterflea, daphnia. In: Lubzens E, Cerda J, Clark M (eds) Dormancy and resistance in harsh environments. Springer, Berlin/Heidelberg, pp 189–202

    Chapter  Google Scholar 

  • Watanabe M (2006) Anhydrobiosis in invertebrates. Appl Entomol Zool 41:15–31

    Article  Google Scholar 

  • Watanabe M, Kikawada T, Minagawa N, Yukuhiro F, Okuda T (2002) Mechanism allowing an insect to survive complete dehydration and extreme temperatures. J Exp Biol 205:2799–2802

    Google Scholar 

  • Watanabe M, Kikawada T, Okuda T (2003) Increase of internal ion concentration triggers trehalose synthesis associated with cryptobiosis in larvae of polypedilum vanderplanki. J Exp Biol 206:2281–2286

    Article  Google Scholar 

  • Watanabe M, Kikawada T, Fujita A, Okuda T (2005) Induction of anhydrobiosis in fat body tissue from an insect. J Ins Physiol 51:727–731

    Article  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006a) Biological effects of anhydrobiosis in an African chironomid, polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592

    Article  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Horikawa DD, Nakahara Y, Wada S, Funayama T, Hamada N, Kobayashi Y, Okuda T (2006b) Biological effects of anhydrobiosis in an African chironomid, polypedilum vanderplanki on radiation tolerance. Int J Radiat Biol 82:587–592

    Article  Google Scholar 

  • Watanabe M, Sakashita T, Fujita A, Kikawada T, Nakahara Y, Hamada N, Horikawa DD, Wada S, Funayama T, Kobayashi Y, Okuda T (2006c) Estimation of radiation tolerance to high let heavy ions in an anhydrobiotic insect, polypedilum vanderplanki. Int J Radiat Biol 82:835–842

    Article  Google Scholar 

  • Watanabe M, Nakahara Y, Sakashita T, Kikawada T, Fujita A, Hamada N, Horikawa DD, Wada S, Kobayashi Y, Okuda T (2007) Physiological changes leading to anhydrobiosis improve radiation tolerance in polypedilum vanderplanki larvae. J Insect Physiol 53:573–579

    Article  Google Scholar 

  • Wharton DA, Barclay S (1993) Anhydrobiosis in the free-living antarctic nematode panagrolaimus-davidi (nematoda, rhabditida). Fund Appl Nematol 16:17–22

    Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2002) Freezing rate affects the survival of a short-term freezing stress in panagrolaimus davidi, an antarctic nematode that survives intracellular freezing. CryoLetters 23:5–10

    Google Scholar 

  • Wolkers WF, Tablin F, Crowe JH (2002) From anhydrobiosis to freeze-drying of eukaryotic cells. Comp Biochem Physiol Mol Integr Physiol 131:535–543

    Article  Google Scholar 

  • Womersley C (1988) Morphological and biochemical adaptations to anhydrobiosis in artificially and naturally dehydrated populations of ditylenchus myceliophagus (nematoda). Am Zool 28:76

    Google Scholar 

  • Wright JC (2001) Cryptobiosis 300 years on from van leuwenhoek: What have we learned about tardigrades? Zool Anz 240:563–582

    Article  Google Scholar 

  • Yoshinaga K, Yoshioka H, Kurosaki H, Hirasawa M, Uritani M, Hasegawa K (1997) Protection by trehalose of DNA from radiation damage. Biosci Biotechnol Biochem 61:160–161

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Gusev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gusev, O., Okuda, T. (2012). “Life Without Water”: The Sleeping Chironomid and Other Anhydrobiotic Invertebrates and Their Utilization in Astrobiology. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_9

Download citation

Publish with us

Policies and ethics