Skip to main content

Antarctica as Model for the Possible Emergence of Life on Europa

  • Chapter
  • First Online:

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

Abstract

From the point of view of the possibility of the existence of life on Europa, we should consider a lake called Vostok, which is the largest of about 80 subglacial lakes in Antarctica. Its surface is of approximately 14,000 km2and its volume is 1,800 km3. Indeed, this Ontario-sized lake in Eastern Antarctica is also deep, with a maximum depth of 670 m. On the other hand, from the point of view of microbiology, the habitat analogue provided by Lake Vostok for the Europa environment seems appropriate (Chela-Flores, 2001). At the time of writing, the ice above the lake has been cored to a depth of over 3,600 m, stopping just over 100 m over the surface of the lake itself. This work has revealed great diversity of single-celled organisms: yeast, actinomycetes, mycelian fungi (which remain viable for almost 40,000 years), diatoms, and most interestingly, 200,000 year old bacteria. Besides, it appears that water temperatures do not drop too far below zero centigrade, with the possibility of geothermal heating raising the temperatures above this level.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bhattacherjee AB, Chela-Flores J (2004) Search for bacterial waste as a possible signature of life on Europa. In: Seckbach J, Chela-Flores J, Owen T, Raulin F (eds) Cellular origin and life in extreme habitats and astrobiology, vol 7. Springer, Dordrecht, pp 257–260

    Google Scholar 

  • Bland MT, Showman AP, Tobie G (2009) The orbital–thermal evolution and global expansion of Ganymede. Icarus 200:207–221

    Article  ADS  Google Scholar 

  • Carlson RW, Johnson RE, And Anderson MS (1999) Sulfuric acid on Europa and the radiolytic sulfur cycle. Science 286:97–99

    Article  ADS  Google Scholar 

  • Cathey DD, Parker BC, Simmons GM Jr, Yongue WH Jr, Van Brunt MR (1981) The microfauna of algal mats and artificial substrates in Southern Victoria Land lakes of Antarctica. Hydrobiologia 85:3–15

    Article  Google Scholar 

  • Chela-Flores J (2001) The new science of astrobiology from genesis of the living cell to evolution of intelligent behavior in the universe. Kluwer Academic Publishers, Dordrecht, 279 pp

    Google Scholar 

  • Chela-Flores J (2010) Instrumentation for the search of habitable ecosystems in the future exploration of Europa and Ganymede. Int J Astrobiol 9(2):101–108 (Copyright holder: Cambridge University Press, 2010). http://www.ictp.it/∼chelaf/jcf_IJA_2010.pdf

  • Chela-Flores J, Bhattacherjee AB, Dudeja S, Kumar N, Seckbach J (2009) Can the biogenicity of Europa’s surfical sulfur be tested simultaneously with penetrators and ion traps? Geophysical research abstracts, vol 11, EGU2009-0, 2009, EGU General Assembly 2009. The Austria Centre, Vienna, 22 Apr

    Google Scholar 

  • Christner BC, Roysto-Bishop G, Foreman CM, Arnold BR, Tranter M, Welh KA, Lyons WB, Tspain AI, Studinger M, Priscu JC (2006) Limnological conditions in subglacial Lake Vostok, Antarctica. Limnol Oceanogr 51:2485–2501

    Article  Google Scholar 

  • Cooper JF, Johnson RE, Mauk BH, Garrett HB, Gehrels N (2001) Energetic ion and electron radiation of the icy Galilean satellites. Icarus 149:133–159

    Article  ADS  Google Scholar 

  • Doran PT, Wharton RA Jr, Berry Lyons W (1994) Paleolimnology of the McMurdo Dry Valleys, Antarctica. J Paleolimnol 10:85–114

    Article  Google Scholar 

  • Dudeja S, Bhattacherjee AB, Chela-Flores J (2010) Microbial mats in Antarctica as models for the search of life on the Jovian moon Europa. In: Seckbach J, Oren A (eds) Microbial mats, in the COLE series, Springer (in press). http://www.ictp.it/∼chelaf/Dudeja.pdf

  • Fagents SA (2003) Considerations for the effusive cryovolcanism on Europa: the post-Galileo perspective. J Geophys Res 108(E12):5139

    Article  Google Scholar 

  • Fanale FP, Granahan JC, McCord TB, Hansen G, Hibbitts CA, Carlson R, Matson D, Ocampo A, Kamp L, Smythe W, Leader F, Mehlman R, Greeley R, Sullivan R, Geissler P, Barth C, Hendrix A, Clark B, Helfenstein P, Veverka J, Belton MJS, Becker K, Becker T, the Galileo instrumentation teams NIMS, SSI, UVS (1999) Galileo’s multiinstrument spectral view of Europa’s surface composition. Icarus 139:179–188

    Article  ADS  Google Scholar 

  • Gowen R, Smith A, Ambrosi R, Ballesteros OP, Barber S, Barnes D, Braithwaite C, Bridges J, Brown P, Church P, Collinson G, Coates A, Collins G, Crawford I, Dehant V, Dougherty M, Chela-Flores J, Fortes D, Fraser G, Yang Y, Grande M, Griffiths A, Grindrod P, Gurvits L, Hagermann A, Hoolst TV, Hussmann H, Jaumann R, Jones A, Jones G, Joy K, Karatekin O, Kargl G, Macagnano A, Mukherjee A, Muller P, Palomba E, Pike T, Proud B, Pullen D, Raulin F, Richter L, Ryden K, Sheridan S, Sims M, Sohl F, Snape J, Stevens P, Sykes J, Tong V, Stevenson T, Karl W, Wilson L, Wright I, Zarnecki J (2009) Looking for astrobiological signatures with penetrators on Europa. In: Physical and engineering sciences exploratory workshops, W08-115, co-funded by Life, Earth and Environmental Sciences: Biosignatures On Exoplanets; The Identity Of Life, Mulhouse, France, 22–26 June 2009. http://www.ictp.it/∼chelaf/ESFsummary.pdf

  • Gowen RA, Smith A, Fortes AD, Barber S, Brown P, Church P, Collinson G, Coates AJ, Collins G, Crawford IA, Dehant V, Chela-Flores J, Griffiths AD, Grindrod PM, Gurvits LI, Hagermann A, Hussmann H, Jaumann R, Jones AP, Joy KH, Karatekin O, Miljkovic K, Palomba E, Pike WT, Prieto-Ballesteros O, Raulin F, Sephton MA, Sheridan MS, Sims M, Storrie-Lombardi MC, Ambrosi R, Fielding J, Fraser G, Gao Y, Jones GH, Kargl G, Karl WJ, Macagnano A, Mukherjee A, Muller JP, Phipps A, Pullan D, Richter L, Sohl F, Snape J, Sykes J, Wells N (2010) Penetrators for in situ sub-surface investigations of Europa. Adv Space Res (accepted for publication)

    Google Scholar 

  • Grasset O, Lebreton J-P, Blanc M, Dougherty M, Erd C, Greeley R, Pappalardo B, the Joint Science Definition Team (2009) The Jupiter Ganymede Orbiter as part of the ESA/NASA Europa Jupiter System Mission (EJSM). EPSC Abstracts 4, EPSC2009-784, European Planetary Science Congress

    Google Scholar 

  • Grundy WM, Buratti BJ, Cheng AF, Emery JP, Lunsford A, McKinnon WB, Moore JM, Newman SF, Olkin CB, Reuter DC, Schenk PM, Spencer JR, Stern SA, Throop HB, Weaver HA (2007) New horizons mapping of Europa and Ganymede. Science 318:234–236

    Article  ADS  Google Scholar 

  • Horvath J, Carsey F, Cutts J, Jones J, Johnson E, Landry B, Lane L, Lynch G, Chela-Flores J, Jeng T-W, Bradley A (1997) Searching for ice and ocean biogenic activity on Europa and Earth. In: Hoover RB (ed) Instruments, methods and missions for investigation of extraterrestrial microorganisms. Proceedings of SPIE 3111, pp 490–500. http://www.ictp.it/∼chelaf/searching_for_ice.html

  • Kiyosu Y, Krouse HR (1990) The role of organic acid in the abiogenic reduction of sulfate and the sulfur isotope effect. Geochem J 24:21–27

    Article  Google Scholar 

  • Lovley DR, Phillips EJP, Lonergan DJ, Widman PK (1995) Fe(III) and S (0) reduction by Paleobacter carbinolicus. Appl Environ Microbiol 61:2132–2138

    Google Scholar 

  • McCord TB, Carlson RW, Smythe WD, Hansen GB, Clark RN, Hibbitts CA, Fanale FPJ, Granahan C, Segura M, Matson DL, Johnson TV, Martin PD (1997) Organics and other molecules in the surfaces of Callisto and Ganymede. Science 278:271–275

    Article  ADS  Google Scholar 

  • McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A, the NIMS team (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res 104:11827–11851

    Article  ADS  Google Scholar 

  • Mikucki JA, Pearson A, Johnson DT, Turchyn AV, Farquhar J, Schrag DP, Anbar AD, Priscu JC, Lee PA (2009) A contemporary microbially maintained subglacial ferrous “ocean”. Science 324:397–400

    Article  ADS  Google Scholar 

  • Mikucki J, Lyons B, Hawes I, Lanoil BD, Doran PT (2010) Saline lakes and ponds in the McMurdo Dry Valleys: ecological analogs to Martian paleolake environments. In: Doran PT, Lyons WB, McKnight DM (eds) Life in Antarctic deserts and other cold dry environments: astrobiological analogs. Cambridge University Press, Cambridge/New York, pp 160–194

    Chapter  Google Scholar 

  • Parker BC, Wharton RA (1985) Physiological ecology of blue-green algal mats (modern stromatolites) in Antarctic oasis lakes. Arch Hydrobiol Suppl 71:331–348

    Google Scholar 

  • Parker BC, Simmons GM Jr, Seaburg KG, Wharton RA Jr (1980) Ecological comparisons of oasis lakes and soils. Antarct J U S 15:167–170

    Google Scholar 

  • Parker BC, Simmons GM Jr, Gordon Love F, Wharton RA Jr, Seaburg KG (1981) Modern stromatolites in Antarctic Dry Valley lakes. Bioscience 31:656–661

    Article  Google Scholar 

  • Parker BC, Simmons GM Jr, Wharton RA Jr, Seaburg KG, Gordon Love F (1982) Removal of organic and inorganic matter from Antarctic lakes by aerial escape of blue green algal mats. J Phycol 18:72–78

    Article  Google Scholar 

  • Priscu JC, Adams EE, Lyons WB, Voytek MA, Mogk DW, Brown RL, McKay CP, Takacs CD, Welch KA, Wolf CF, Krishtein JD, Avci R (1999) Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286:2141–2144

    Article  Google Scholar 

  • Priscu JC, Bell RE, Bulat SA, Ellis-Evans CJ, Kennicutt MC, Lukin VV, Petit J-R, Powell RD, Siegert MJ, Tabacco I (2003) An international plan for Antarctica subglacial lake exploration. Polar Geogr 27:69–83

    Article  Google Scholar 

  • Shen Y, Buick R (2004) The antiquity of microbial sulfate reduction. Earth Sci Rev 64:243–272

    Article  ADS  Google Scholar 

  • Siegert MJ, Ellis-Evans JC, Tranter M, Mayer C, Petit JR, Salamatin A, Priscu JC (2001) Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414:603–609

    Article  ADS  Google Scholar 

  • Siegert MJ, Tranter M, Ellis-Evans JC, Priscu JC, Lyons WB (2003) The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydrol Processes 17:795–814

    Article  ADS  Google Scholar 

  • Siegert MJ, Carter S, Tabacco I, Popov S, Blankenship DD (2005) A revised inventory of Antarctic subglacial lakes. Antarct Sci 17:453–460

    Article  Google Scholar 

  • Simmons GM Jr, Parker BC, Allnut FTC, Brown D, Cathey D, Seaburg KG (1979) Ecological comparison of oasis lakes and soils. Antarct J U S 14:181–183

    Google Scholar 

  • Smith BE, Fricker HA, Joughin IR, Tulaczyk S (2009) An inventory of active subglacial lakes in Antarctica detected by ICESat (2003–2008). J Glaciol 55:573–595

    Article  Google Scholar 

  • Weiss P, Yung KL, Ng TC, Komle N, Kargl G, Kaufmann E (2008) Study of a melting drill head for the exploration of subsurface planetary ice layers. Planet Space Sci 56:1280–1292

    Article  ADS  Google Scholar 

  • Weiss P, Yung KL, Koemle N, Ko SM, Kaufmann E, Kargl G (2011) Thermal drill sampling system onboard high-velocity impactors for exploring the subsurface of Europa. Adv Space Res 48(4):743–754

    Google Scholar 

  • Wharton RA Jr, Parker BC, Simmons GM Jr (1983) Distribution, species composition and morphology of algal mats in Antarctic Dry Valley lakes. Phycologia 22:355–365

    Article  Google Scholar 

  • Wortmann UG, Bernasconi SM, Bottcher ME (2001) Hypersulfidic deep biosphere indicates extreme sulfur isotope fractionation during single-step microbial sulfate reduction. Geology 29:647–650

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Dudeja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Dudeja, S., Bhattacherjee, A.B., Chela-Flores, J. (2012). Antarctica as Model for the Possible Emergence of Life on Europa. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_23

Download citation

Publish with us

Policies and ethics