Skip to main content

Production of Dormant Stages and Stress Resistance of Polar Cyanobacteria

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 24))

Abstract

Cyanobacteria represent the major component of the autotrophic community in many different types of habitats in both the Arctic and Antarctic. Their dominance is attributed mainly because of their high tolerance to the extreme polar environments. Low temperatures and desiccation are the main forms of physical environmental stressors. During freezing-melting and desiccation periods, the cells are exposed to radical dehydration effects which can be quite damaging. Polar cyanobacteria have evolved a diverse range of protective strategies in order to avoid, or tolerate, the various stresses. The most widespread adaptation to environmental stress is dormancy. Dormancy can be subdivided into diapause and quiescence. Diapause (the cyanobacterial akinete) is endogenously controlled: it is connected to external stressors but is not directly induced by them. Akinetes are more resistant to various insults and commonly considered as overwintering stages. However, the majority of cyanobacteria in the polar regions survive winters without the production of akinetes. This suggests that other alternative mechanisms contribute to survival during stressful conditions. Quiescence (the decrease of metabolic activity under exogenous control) is the transformation into a resistant state, with hardly visible morphological differentiation of the cell. It has been suggested that starvation and entrance into the stationary phase can induce changes in the ultrastructure (e.g., thickening of cell walls) and biochemistry (e.g.,sucrose and trehalose accumulation, changes in composition of fatty acids, secretion of extracellular polysaccharides) of the stressed cells. We accept that the stationary-phase and/or starvation-induced cells can represent alternative dormant stages of polar cyanobacteria which do not produce akinetes. This overview summarizes the present knowledge about production of dormant stages and stress resistance of polar cyanobacteria. It is clear that we still have paucity of information on this topic and that further research is necessary.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker JP, McGann LE (2003) Protective effect of intracellular ice during freezing? Cryobiology 46:197–2002

    Google Scholar 

  • Agrawal SC (2009) Factors affecting spore germination in algae – review. Folia Microbiol 54(4):273–302

    Google Scholar 

  • Agrawal SC, Singh V (1999) Viability of dried vegetative trichomes, formation of akinetes and heterocysts and akinete germination in some blue-green algae under water stress. Folia Microbiol 44(4):411–418

    Google Scholar 

  • Alekseev VR, Hwang J, Tseng M (2006) Diapause in aquatic invertebrates: what’s known and what’s next in research and medical application? J Mar Sci Technol 14(4):269–286

    Google Scholar 

  • Alpert P (2005) The limits and frontiers of desiccation-tolerant life. Integr Comp Biol 45:685–695

    Google Scholar 

  • Alpert P (2006) Constrains of tolerance: why are desiccation-tolerant organisms so small or rare? J Exp Biol 209:1575–1584

    Google Scholar 

  • Argüelles JC (2000) Physiological role of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol 174:217–224

    Google Scholar 

  • Billi D, Grilli Caiola M (1996) Effects of nitrogen limitation and starvation on Chroococcidiopsissp. (Chroococcales). New Phytol 133:563–571

    Google Scholar 

  • Billi D, Potts M (2000) Life without water: responses of prokaryotes to desiccation. In: Storey KB, Storey J (eds) Environmental stressors and gene responses. Elsevier Science, Amsterdam, pp 181–192

    Google Scholar 

  • Broady PA (1996) Diversity, distribution and dispersal of Antarctic algae. Biodivers Conserv 5:1307–1335

    Google Scholar 

  • Casamatta DA, Johansen JR, Vis ML, Broadwater ST (2005) Molecular and morphological characterization of ten polar and near-polar strains within the Oscillatoriales (cyanobacteria). J Phycol 41:421–438

    Google Scholar 

  • Castenholz RW, Jørgensen BB, D’Amelio E, Bauld J (1991) Photosynthetic and behavioral versatility of the cyanobacterium Oscillatoria boryanain a sulfide-rich microbial mat. FEMS Microbiol Ecol 86:43–58

    Google Scholar 

  • Cavacini P (2001) Soil algae from northern Victoria Land (Antarctica). Polar Biosci 14:45–60

    Google Scholar 

  • Colwell RR (2009) Viable but not cultivable bacteria. Microbiol Monogr 10:121–129

    Google Scholar 

  • Colwell RR, Grimes DJ (2000) Semantics and strategies. In: Colwell RR, Grimes DJ (eds) Nonculturable microorganisms in the environment. ASM Press, Washington, DC, pp 1–6

    Google Scholar 

  • Cronan JR (1968) Phospholipid alterations during growth of Escherichia coli. J Bacteriol 95(6):2054–2061

    Google Scholar 

  • Crowe JH, Oliver AE, Tablin F (2002) Is there a single biochemical adaptation to anhydrobiosis? Integr Comp Biol 42:497–503

    Google Scholar 

  • Crowe JH, Crowe LM, Tablin F, Wolkers W, Oliver AE, Tsvetkova NM (2004) Stabilization of cells during freeze-drying: the trehalose myth. In: Fuller BJ, Lane N, Benson EE (eds) Life in frozen state. CRC Press, London, pp 581–602

    Google Scholar 

  • Damerval T, Guglielmi G, Houmard J, Tandeau de Marsac N (1991) Hormogonium differentiation in the cyanobacterium Calothrix: a photoregulated developmental process. Plant Cell 3:191–201

    Google Scholar 

  • Davey MC (1989) The effects of freezing and desiccation on photosynthesis and survival of terrestrial Antarctic algae and cyanobacteria. Polar Biol 10:29–36

    ADS  Google Scholar 

  • Davey MC, Clarke KJ (1991) The spatial distribution of microalgae on Antarctic fellfield soils. Antarct Sci 3(3):257–263

    Google Scholar 

  • Davies PL, Baardsnes J, Kuiper MJ, Walker VK (2002) Structure and function of antifreeze proteins. Phil Trans R Soc Lond 357:927–935

    Google Scholar 

  • De los Ríos A, Ascaso C, Wierzchos J, Fernández-Valiente E, Quesada A (2004) Microstructural characterization of cyanobacterial mats from the McMurdo Ice Shelf. Antarct Appl Environ Microbiol 70(1):569–580

    Google Scholar 

  • Dillon JG, Castenholz RW (1999) Scytonemin, a cyanobacterial sheath pigment, protects against UVC radiation: implications for early photosynthetic life? J Phycol 35:673–681

    Google Scholar 

  • Ehling-Schulz M, Scherer S (1999) UV protection in cyanobacteria. Eur J Phycol 34:329–338

    Google Scholar 

  • El’-Registan GI, Mulyukin AL, Nikolaev YA, Suzina NE, Gal’chenko VF, Duda VI (2006) Adaptogenic functions of extracellular autoregulators of microorganisms. Microbiology 75(4):380–389

    Google Scholar 

  • Elster J (1999) Algal versatility in various extreme environments. In: Seckbach J (ed) Enigmatic microorganisms and life in extreme environments. Kluwer Academic Publishers, Dordrecht, pp 215–227

    Google Scholar 

  • Elster J (2002) Ecological classification of terrestrial algal communities in polar environments. In: Beyer L, Bölter M (eds) Ecological studies, vol 154: Geoecology of Antarctic ice-free coastal landscapes. Springer, Berlin/Heidelberg, pp 303–326

    Google Scholar 

  • Elster J, Benson EE (2004) Life in the Polar terrestrial environment with a focus on algae and cyanobacteria. In: Fuller BJ, Lane N, Benson EE (eds) Life in frozen state. CRC Press, London, pp 111–150

    Google Scholar 

  • Elster J, Svoboda J, Komárek J, Marvan P (1997) Algal and cyanoprocaryote communities in a glacial stream, Sverdrup Pass, 79oN, Central Ellesmere Island, Canada. Arch Hydrobiol/Algolog Stud 85:57–93

    Google Scholar 

  • Fuller BJ (2004) Cryoprotectants: the essential antifreezes to protect life in the frozen state. CryoLetters 25(6):375–388

    Google Scholar 

  • Gao K, Qiu B, Xia J, Yu A, Li Y (1998) Effect of wind speed on loss of water from Nostoc flagelliformecolonies. J Appl Phycol 10:55–58

    Google Scholar 

  • Gilichinsky DA, Vorobyova EA, Erokhina LG, Fyodorov-Davydov DG, Chaikovskaya NR (1992) Long-term preservation of microbial ecosystems in permafrost. Adv Space Res 12(4):255–263

    ADS  Google Scholar 

  • Gorshkov VY, Petrova OE, Mukhametshina NE, Ageeva MV, Mulyukin AL, Gogolev YV (2009) Formation of “nonculturable” dormant forms of the phytopathogenic enterobacterium Erwinia carotovora. Microbiology 78(5):585–592

    Google Scholar 

  • Grilli Caiola M, Billi D, Friedmann EI (1996) Effect of desiccation on envelopes of the cyanobacterium Chroococcidiopsissp. (Chroococcales). Eur J Phycol 31:97–105

    Google Scholar 

  • Hawes I, Howard-Williams C, Vincent WF (1992) Desiccation and recovery of Antarctic cyanobacterial mats. Polar Biol 12:587–594

    Google Scholar 

  • Helm RF, Huang Z, Edwards D, Leeson H, Peery W, Potts M (2000) Structural characterization of the released polysaccharide of desiccation-tolerant Nostoc communeDRH-1. J Bacteriol 182(4):974–982

    Google Scholar 

  • Hengge-Aronis R, Klein W, Langen R, Rimmele M, Boos W (1991) Trehalose synthesis genes are controlled by the putative sigma factor encoded by rpoS and are involved in stationary-phase thermotolerance in Escherichia coli. J Bacteriol 173(24):7918–7924

    Google Scholar 

  • Hershkovitz N, Oren A, Cohen Y (1991) Accumulation of trehalose and sucrose in cyanobacteria exposed to matric water stress. Appl Environ Microbiol 57(3):645–648

    Google Scholar 

  • Hill DR, Hladun SL, Schrerer S, Potts M (1994) Water stress proteins of Nostoc commune (Cyanobacteria) are secreted with UV-A/B-absorbing pigments and associate with 1,4-β-D-xylanxylanohydrolase activity. J Biol Chem 269(10):7726–7734

    Google Scholar 

  • Hill DR, Keenan TW, Helm RF, Potts M, Crowe LM, Crowe JH (1997) Extracellular polysaccharide of Nostoc commune (Cyanobacteria) inhibits fusion of membrane vesicles during desiccation. J Appl Phycol 9:237–248

    Google Scholar 

  • Hori K, Okamoto J, Tanji Y, Unno H (2003) Formation, sedimentation and germination properties of Anabaenaakinetes. Biochem Eng J 14:67–73

    Google Scholar 

  • Jenkins DE, Chaisson SA, Matin A (1990) Starvation-induced cross protection against osmotic challenge in Escherichia coli. J Bacteriol 172(5):2779–2781

    Google Scholar 

  • Jungblut A, Hawes I, Mounfort D, Hitzfield B, Ditrich DR, Burns BP, Neilan BA (2005) Diversity within cyanobacterial mat communities in variable salinity meltwater ponds of McMurdo Ice Shelf. Antarct Environ Microbiol 7(4):519–529

    Google Scholar 

  • Kaprelyants AS, Kell DB (1993) Dormancy in stationary-phase cultures of Micrococcus luteus: flow cytometric analysis of starvation and resuscitation. Appl Environ Microbiol 59(10):3187–3196

    Google Scholar 

  • Kaprelyants A, Gottschal J, Kell D (1993) Dormancy in non-sporulating bacteria. FEMS Microbiol Rev 104:271–286

    Google Scholar 

  • Keilin D (1959) The problem of anabiosis or latent life: history and current concepts. Proc Roy Soc 150B:149–191

    ADS  Google Scholar 

  • Kell DB, Young M (2000) Bacterial dormancy and culturability: the role of autocrine growth factors. Curr Opin Microbiol 3(3):238–243

    Google Scholar 

  • Kell DB, Ryder HM, Kaprelyants AS, Westerhoff HV (1991) Quantifying heterogeneity: flow cytometry of bacterial cultures. Anton Leeuw 60:145–158

    Google Scholar 

  • Komárek J, Elster J, Komárek O (2008) Diversity of the cyanobacterial microflora on the northern part of James Ross Iceland, NW Weddell Sea, Antarctica. Polar Biol 31:853–865

    Google Scholar 

  • Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM (1995) Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl Environ Microbiol 61(10):3592–3597

    Google Scholar 

  • Li C, Zhao J, Wang Y, Han X, Liu N (2009) Synthesis of cyclopropane fatty acid and its effect on freeze-drying survival of Lactobacillus bulgaricusL2 at different growth conditions. World J Microbiol Biotechnol 25:1659–1665

    Google Scholar 

  • Lin Y, Hirai M, Kashino Y, Koike H, Tuzi S, Satoh K (2004) Tolerance to freezing in cyanobacteria with various tolerances to drying stress. Polar Biosci 17:56–68

    Google Scholar 

  • Livingstone D, Jaworski GHM (1980) The viability of akinetes of blue-green algae recovered from the sediments of Rostherne mere. Eur J Phycol 15:357–364

    Google Scholar 

  • Lizotte MP (2008) Phytoplankton and primary production. In: Vincent WF, Laybourn-Parry J (eds) Polar lakes and rivers: limnology of Arctic and Antarctic aquatic ecosystems. Oxford University Press, New York, pp 157–178

    Google Scholar 

  • Lundheim R (2002) Physiological and ecological significance of biological ice-nucleators. Phil Trans R Soc Lond 357:937–943

    Google Scholar 

  • MacKay MA, Norton RS, Borowitzka LJ (1984) Organic osmoregulatory solutes in cyanobacteria. J Gen Microbiol 130:2177–2191

    Google Scholar 

  • Mazur P (1984) Freezing of living cells: mechanisms and implications. Am J Physiol Cell Physiol 247:125–142

    Google Scholar 

  • Meeks JC, Campbell EL, Summers ML, Wong FC (2002) Cellular differentiation in the cyanobacterium Nostoc punctiforme. Arch Microbiol 178:395–403

    Google Scholar 

  • Morris GJ (1981) Cryopreservation: an introduction to cryopreservation in culture collections. Institute of Terrestrial Ecology, Cambridge, 27 pp

    Google Scholar 

  • Mueller DR, Vincent WF, Bonilla S, Laurion I (2005) Extremotrophs, extremophiles and broadband pigmentation strategies in a high arctic ice shelf ecosystem. FEMS Microbiol Ecol 53:73–87

    Google Scholar 

  • Mukamolova GV, Yanopolskaya ND, Votyakova TV, Popov VI, Kaprelyants AS, Kell DB (1995) Biochemical changes accompanying the long-term starvation of Micrococcus luteuscells in spent growth medium. Arch Microbiol 163:373–379

    Google Scholar 

  • Mulyukin AL, Lusta KA, Gryaznova MN, Kozlova AN, Duzha MV, Duda VI, El’-Registan GI (1996) Formation of resting cells by Bacillus cereusand Micrococcus luteus. Microbiology 65(6):683–689

    Google Scholar 

  • Mulyukin AL, Lusta KA, Gryaznova MN, Babushenko ES, Kozlova AN, Duzha MV, Mityushina LA, Duda VI, El’-Registan GI (1997) Formation of resting cells in microbial suspensions undergoing autolysis. Microbiology 66(1):32–38

    Google Scholar 

  • Muñoz-Rojas J, Bernal P, Duque E, Godoy P, Segura A, Ramos J (2006) Involvement of cyclopropane fatty acids in the response of Pseudomonas putidaKT2440 to freeze-drying. Appl Environ Microbiol 72(1):472–477

    Google Scholar 

  • Nadeau T, Castenholz RW (2000) Characterizations of psychrophilic oscillatorians (cyanobacteria) from Antarctic meltwater ponds. J Phycol 36:914–923

    Google Scholar 

  • Nichols JM, Adams DG (1982) Akinetes. In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. Blackwell Scientific Publications, Oxford, pp 387–412

    Google Scholar 

  • Notley L, Ferenci T (1996) Induction of RpoS-dependent functions in glucose-limited continuous culture: what level of nutrient limitation induces the stationary phase of Escherichia coli. J Bacteriol 178(5):1465–1468

    Google Scholar 

  • Oliver JD (2005) The viable but nonculturable state in bacteria. J Microbiol 43:93–100

    Google Scholar 

  • Ophir T, Gutnick DL (1994) A role of exopolysaccharides in the protection of microorganisms from desiccation. Appl Environ Microbiol 60(2):740–745

    Google Scholar 

  • Potts M (1994) Desiccation tolerance of prokaryotes. Microbiol Mol Biol Rev 58:755–805

    Google Scholar 

  • Potts M (1999) Mechanisms of desiccation tolerance in cyanobacteria. Eur J Phycol 34:319–328

    Google Scholar 

  • Potts M, Slaughter SM, Hunneke F, Garst JF, Helm RF (2005) Desiccation tolerance of prokaryotes: application to human cells. Integr Comp Biol 45:800–809

    Google Scholar 

  • Quesada A, Vincent WF, Lean DRS (1999) Community and pigment structure of Arctic cyano­bacterial assemblages: the occurrence and distribution of UV-absorbing compounds. FEMS Microbiol Ecol 28:315–323

    Google Scholar 

  • Raymond JA, Fritsen CH (2000) Ice-active substances associate with Antarctic freshwater and terrestrial photosynthetic organisms. Antarct Sci 12(4):418–424

    Google Scholar 

  • Rebecchi L, Altiero T, Guidetti R (2007) Anhydrobiosis: the extreme limit of desiccation tolerance. Invertebr Surv J 4(2):65–81

    Google Scholar 

  • Reed RH, Richardson DL, Warr SRC, Stewart WDP (1984) Carbohydrate accumulation and osmotic stress in cyanobacteria. J Gen Microbiol 130:1–4

    Google Scholar 

  • Roszak DB, Colwell RR (1987) Survival strategies of bacteria in the natural environment. Microbiol Rev 51(3):365–379

    Google Scholar 

  • Sakamoto T, Yoshida T, Arima H, Hatanaka Y, Takani Y, Tamaru Y (2009) Accumulation of trehalose in response to desiccation and salt stress in the terrestrial cyanobacterium Nostoc commume. Physiol Res 57:66–73

    Google Scholar 

  • Schwarz R, Forchhammer K (2005) Acclimation of unicellular cyanobacteria to macronutrient deficiency: emergence of a complex network of cellular responses. Microbiology 151:2503–2514

    Google Scholar 

  • Shaw E, Hill DR, Brittain N, Wright DJ, Täuber U, Marand H, Helm RF, Potts M (2003) Unusual water flux in the extracellular polysaccharide of the cyanobacterium Nostoc commune. Appl Environ Microbiol 69(9):5679–5684

    Google Scholar 

  • Siegele DA, Kolter R (1992) Life after log. J Bacteriol 174(2):345–348

    Google Scholar 

  • Singh SC, Sinha RP, Häder D (2002) Role of lipids and fatty acids in stress tolerance in cyanobacteria. Acta Protozool 41:297–308

    Google Scholar 

  • Smith JJ, Tow LA, Stafford W, Cary C, Cowan DA (2006) Bacterial diversity in three different Antarctic cold desert mineral soils. Microb Ecol 51:413–421

    Google Scholar 

  • Steponkus PL, Lynch DV (1989) Freeze/thaw-induced destabilization of the plasma membrane and the effects of cold acclimation. J Bioenerg Biomembr 21(1):21–41

    Google Scholar 

  • Strauss G, Hauser H (1986) Stabilization of lipid bilayer vesicles by sucrose during freezing. Proc Natl Acad Sci USA 83:2422–2426

    ADS  Google Scholar 

  • Sudo SZ, Dworkin M (1973) Comparative biology of prokaryotic resting cells. Adv Microb Physiol 9:153–224

    Google Scholar 

  • Sukenik A, Beardall J, Hadas O (2007) Photosynthetic characterization of developing and mature akinetes of Aphanizomenon ovalisporum(cyanoprokaryota). J Phycol 43:780–788

    Google Scholar 

  • Sutherland JM, Herdman M, Stewart WDP (1979) Akinetes of the cyanobacterium NostocPCC 7524: macromolecular composition, structure and control of differentiation. J Gen Microbiol 115:273–287

    Google Scholar 

  • Sutherland JM, Reaston J, Stewart WDP, Herdman M (1985) Akinetes of the cyanobacterium NostocPCC 7524: macromolecular and biochemical changes during synchronous germination. J Gen Microbiol 131:2855–2863

    Google Scholar 

  • Suzina NE, Mulyukin AL, Kozlova AN, Shorokhova AP, Dmitriev VV, Barinova ES, Mokhova ON, El’-Registan GI, Duda VI (2004) Ultrastructure of resting cells of some non-spore-forming bacteria. Microbiology 73(4):435–447

    Google Scholar 

  • Tamaru Y, Takani Y, Yoshida T, Sakamoto T (2005) Crucial role of extracellular polysaccharides in desiccation and freezing tolerance in the terrestrial cyanobacterium Nostoc commune. Appl Environ Microbiol 71(11):7327–7333

    Google Scholar 

  • Tang EPY, Tremblay R, Vincent WF (1997) Cyanobacterial dominance of polar freshwater ecosystems: are high-latitude mat-formers adapted to low temperature? J Phycol 33:171–181

    Google Scholar 

  • Tanghe A, van Dijck P, Thevelein JM (2003) Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications. Adv Appl Microbiol 53:129–176

    Google Scholar 

  • Thiel T, Wolk CP (1983) Metabolic activities of isolated akinetes of the cyanobacterium Nostoc spongiaeforme. J Bacteriol 156(1):369–374

    Google Scholar 

  • Thomas DN, Fogg GE, Convey P, Fritsen CH, Gili J-M, Gradinger R, Laybourn-Parry J, Reid K, Walton DWH (2008) The biology of Polar Regions. Oxford University Press, New York

    Google Scholar 

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118:1–7

    Google Scholar 

  • Turner MA, Arellano F, Kozloff LM (1990) Three separate classes of bacterial ice nucleation structures. J Bacteriol 172(5):2521–2526

    Google Scholar 

  • Vézina S, Vincent WF (1997) Arctic cyanobacteria and limnological properties of their environment: Bylot Island, Northwest Territories, Canada (73°N, 80°W). Polar Biol 17:523–534

    Google Scholar 

  • Vincent WF (1988) Microbial ecosystems of Antarctica. Cambridge University Press, Cambridge, 304 pp

    Google Scholar 

  • Vincent WF (2000) Cyanobacterial dominance in the Polar Regions. In: Whitton BA, Potts M (eds) The ecology of cyanobacteria: their diversity in time and space. Kluwer Academic Publishers, Dordrecht, pp 321–340

    Google Scholar 

  • Vincent WF (2007) Cold tolerance in cyanobacteria and life in the cryosphere. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments. Springer, Dordrecht, pp 289–301

    Google Scholar 

  • Votyakova TV, Kaprelyants AS, Kell DB (1994) Influence of viable cells on the resuscitation of dormant cells in Micrococcus luteuscultures held in an extended stationary phase: the population effect. Appl Environ Microbiol 60(9):3284–3291

    Google Scholar 

  • Wharton DA, Ferns DJ (1995) Survival of intracellular freezing by the Antarctic nematode Panagrolaimus davidi. J Exp Biol 198:1381–1387

    Google Scholar 

  • Wharton DA, Goodall G, Marshall CJ (2003) Freezing survival and cryoprotective dehydration as cold tolerance mechanisms in the Antarctic nematode Panagrolaimus davidi. J Exp Biol 206:215–221

    Google Scholar 

  • Worland MR, Lukešová A (2001) The application of differential scanning calorimetry and ice nucleation spectrometry to ecophysiological studies of algae. Nova Hedwigia, Beiheft 123:571–583

    Google Scholar 

  • Yamamoto Y (1972) The fatty acid composition of akinetes, heterocysts and vegetative cells in Anabaena cylindrica. Plant Cell Physiol 13:913–915

    Google Scholar 

Download references

Acknowledgements

The study was made possible with the support of grants from the Ministry of Education of the Czech Republic (Kontakt ME 934, and INGO – LA 341).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daria Tashyreva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Tashyreva, D., Elster, J. (2012). Production of Dormant Stages and Stress Resistance of Polar Cyanobacteria. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_21

Download citation

Publish with us

Policies and ethics