Skip to main content

Terrestrial Analogues for Early Planetary Oceans: NIUAFO‘OU CALDERA LAKES (Tonga) and Their Geology, Water Chemistry, and Stromatolites

  • Chapter
  • First Online:
Life on Earth and other Planetary Bodies

Abstract

Earth is a unique planet in a special planetary system to have not only made biogenesis possible but also to sustain life’s long-term evolution toward multi­cellularity and self-recognition. The reconstruction of Earth’s history relies on evidence recovered from its rock record. From this record, we know that life originated prior to 3.8 Ga (e.g., Schidlowski et al., 1979; Mojzsis et al., 1996), that multicellular life arose at around 0.6 Ga, and that biologically controlled, enzymatic biomineralization started with the beginning of the Phanerozoic eon, at around 0.54 Ga ago (e.g., Lowenstam and Margulis, 1980; Simkiss, 1989). Geochemical forcing most probably triggered these events (Kazmierczak and Degens, 1985; Kazmierczak et al., 1985; Kempe and Degens, 1985; Kempe and Kazmierczak, 1994; Kazmierczak and Kempe, 2004; Brennan et al., 2004). The nature of this forcing, however, remains unknown, and one can only formulate working hypotheses. The Earth system is governed by too many parameters, excluding the possibility of building models, which, by representing all the physical interactions, would create life. Therefore, we rather have to ask, what are the necessary environmental conditions under which life could have been initiated and can we find such environments even today in order to study these primordial conditions?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bathurst BC (1975) Carbonate sediments and their diagenesis, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Berridge MJ, Bootman MD, Lipp P (1998) Calcium – a life and death signaling. Nature 395:645–648

    Article  ADS  Google Scholar 

  • Bertrand-Sarfati J (1976) An attempt to classify late Precambrian stromatolite microstructures. In: Walter MR (ed) Stromatolites.Developments in sedimentology 20. Elsevier, Amsterdam, pp 251–258

    Google Scholar 

  • Borle AB (1981) Control, modulation and regulation on cell calcium. Rev Physiol Biochem Pharmacol 90:14–153

    Google Scholar 

  • Brennan ST, Lowenstein TK, Horita J (2004) Seawater chemistry and the advent of biocalcification. Geology 32:473–476

    Article  ADS  Google Scholar 

  • Broecker WS, Peng T-H (1982) Tracers in the sea. El Digio Press, Lamont-Doherty Geological Observatory, Palisades

    Google Scholar 

  • Burne RV, Moore LS (1987) Microbialites: organosedimentary deposits of benthic microbial communities. Palaios 2:241–254

    Article  Google Scholar 

  • Campbell AK (1983) Intracellular calcium; its universal role as a regulator. Wiley, Chichester

    Google Scholar 

  • Carafoli E (1987) Intracellular calcium homeostasis. Annu Rev Biochem 56:395–433

    Article  Google Scholar 

  • Case RM, Eisner D, Gurney A, Jones O, Muallem S, Verkhratsky A (2007) Evolution of calcium homeostasis: from birth of the first cell to an omnipresent signaling system. Cell Calcium 42:345–350

    Article  Google Scholar 

  • Cohen E (1880) Ueber Laven von Hawaii und einigen anderen Inseln des Grossen Oceans nebst einigen Bemerkungen über glasige Gesteine im allgemeinen. Neues Jb Min Geol Paläontol 1880(II):23–62

    Google Scholar 

  • Davis WL, McKay CP (1996) Origins of life: a comparison of theories and application to Mars. Orig Life Evol Biosph 26:61–73

    Article  ADS  Google Scholar 

  • Eugster HP, Hardie LA (1978) Saline lakes. In: Lerman A (ed) Lakes – chemistry, geology, physics. Springer, New York, pp 237–293

    Google Scholar 

  • Fairchild IJ (1991) Origins of carbonate in Neoproterozoic stromatolites and identification of modern analogues. Precambrian Res 53:281–299

    Article  Google Scholar 

  • Flügel E (2005) Microfacies of carbonate rocks. Springer, Berlin/Heidelberg/New York

    Google Scholar 

  • Hofmann HJ (1969) Stromatolites from the Proterozoic Animikie and Sibley Groups, Ontario. Geological survey of Canada paper 68–69. Department of Energy, Mines and Resources, Ottawa, 77pp

    Google Scholar 

  • Hofmann HJ (1973) Stromatolites: characteristics and utility. Earth Sci Rev 9:339–373

    Article  ADS  Google Scholar 

  • Horodyski R (1975) Stromatolites of the Lower Missoula Group (middle Proterozoic), Belt Supergroup, Glacier National Park, Montana. Precambrian Res 2:215–254

    Article  Google Scholar 

  • Jaggar TA (1930) The island volcano Niuafoou. The Volcano Letter 312, December 18, 1–4

    Google Scholar 

  • Jaggar TA (1931) Geology and geography of Niuafoou Volcano. The Volcano Letter 318, January 29, 1–3

    Google Scholar 

  • Jaggar TA (1935) Living on a volcano – an unspoiled patch of Polynesia is Niuafoo, nicknamed “Tin Can Island” by stamp collectors. Nat Geogr 68(1):91–106

    Google Scholar 

  • Jaggar TA (1937) Trends in the philosophy of science. The Volcano Letter 447, May, 2–6

    Google Scholar 

  • Jaggar TA (1945) Tin Can Islander live next to spouting lava. In: Volcanoes declare war. Paradise of the Pacific, Honolulu, pp 17–22

    Google Scholar 

  • Jaiswal JK (2001) Calcium – how and why? J Biosci 26:357–363

    Article  Google Scholar 

  • Kazmierczak J, Degens ET (1985) Calcium and the early eukaryotes. Mitt. Geol.-Paläontol. Inst. Univ. Hamburg 61, pp 1–20

    Google Scholar 

  • Kazmierczak J, Kempe S (2004) Calcium build-up in the Precambrian sea – a major promoter in the evolution of eukaryotic life. In: Seckbach J (ed) Origins – genesis, evolution and diversity of life. Kluwer Academic Publishers, Dordrecht, pp 331–345

    Google Scholar 

  • Kazmierczak J, Kempe S (2006) Genuine modern analogues of Precambrian stromatolites from caldera lakes of Niuafo’ou, Tonga. Naturwissenschaften 93:119–126

    Article  ADS  Google Scholar 

  • Kazmierczak J, Ittekkot V, Degens ET (1985) Biocalcification through time: environmental challenge and cellular response. Paläont Zschr 59:15–33

    Google Scholar 

  • Kazmierczak J, Kempe S, Altermann W (2004) Microbial origin of Precambrian carbonates: lessons from modern analogues. In: Eriksson PG, Altermann W, Nelson DR, Mueller WU, Catuneanu O (eds) The Precambrian Earth: tempos and events. Elsevier, Amsterdam, pp 545–564

    Google Scholar 

  • Kazmierczak J, Kempe S, Kremer B, López-García P, David Moreira D, Rosaluz Tavera R (2011) Hydrochemistry and microbialites of the alkaline crater Lake Alchichica, Mexico. Facies 57:543–570

    Google Scholar 

  • Kempe S (1977) Hydrographie, Warvenchronologie und organische Geochemie des Van Sees, Osttürkei. Dissertation, Mitt. Geol.-Paläont. Inst. Univ. Hamburg 47, pp 125–228

    Google Scholar 

  • Kempe S (1990) Alkalinity: the link between anaerobic basins and shallow water carbonates? Naturwissenschaften 77:426–427

    Article  ADS  Google Scholar 

  • Kempe S (2002) Alkalinity pump and carbonate precipitation: a comparison of the crater lakes of Kauhako, Hawai‘i, Satonda, Indonesia and Niuafo‘ou, Tonga. In: 6th international symposim on the geochemistry of the Earth’s surface, 20–24 May, 2002, Honolulu, Hawaii, Abstract vol, pp 136–137

    Google Scholar 

  • Kempe S, Degens ET (1985) An early soda ocean? Chem Geol 53:95–108

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (1990a) Calcium carbonate supersaturation and the formation of in situ calcified stromatolites. In: Ittekkot VA, Kempe S, Michaelis W, Spitzy A (eds) Facets of modern biogeochemistry. Springer, Berlin, pp 255–278

    Chapter  Google Scholar 

  • Kempe S, Kazmierczak J (1990b) Chemistry and stromatolites of the sea-linked Satonda Crater Lake, Indonesia: a recent model for the Precambrian sea? Chem Geol 81:299–310

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (1993) Satonda Crater Lake, Indonesia: hydrogeochemistry and biocarbonates. Facies 28:1–32

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (1994) In: Doumenge F (ed) Past and present biomineralization processes. Considerations about the carbonate cycle. Bull. Inst. Oceanogr, Monaco, no. Spec. 13. Musée océanographique, Monaco, pp 61–117

    Google Scholar 

  • Kempe S, Kazmierczak J (1997) A terrestrial model for an alkaline Martian hydrosphere. Planet Space Sci 45(11):493–1499

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (2002) Biogenesis and early life on Earth and Europa: favored by an alkaline ocean? Astrobiology 2(1):23–130

    Article  Google Scholar 

  • Kempe S, Kazmierczak J (2003) Modern soda lakes: model environments for an early alkaline ocean. In: Müller T, Müller H (eds) Modelling in natural sciences; design, validation and case studies. Springer, Berlin/Heidelberg, pp 309–322

    Google Scholar 

  • Kempe S, Kazmierczak J (2007) Hydrochemical key to the genesis of calcareous nonlaminated and laminated cyanobacterial microbialites. In: Seckbach J (ed) Algae and cyanobacteria in extreme environments (COLE series 11). Springer, Dordrecht, pp 241–264

    Google Scholar 

  • Kempe S, Kazmierczak J (2011a) Soda lakes. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht/London, pp 824–829

    Google Scholar 

  • Kempe S, Kazmierczak J (2011b) Soda ocean. In: Reitner J, Thiel V (eds) Encyclopedia of geobiology. Springer, Dordrecht/London, pp 829–833

    Google Scholar 

  • Kempe S, Kazmierczak J, Degens ET (1989) The soda ocean concept and its bearing on biotic evolution. In: Crick RE (ed) Origin, evolution, and modern aspects of biomineralization in plants and animals. Plenum Press, New York, pp 29–43

    Google Scholar 

  • Kempe S, Kazmierczak J, Landmann G, Konuk T, Reimer A, Lipp A (1991) Largest known microbialites discovered in Lake Van, Turkey. Nature 349:605–608

    Article  ADS  Google Scholar 

  • Kempe S, Kazmierczak J, Reimer A, Landmann G, Reitner J (1997) Satonda Island: a porthole view into the oceanic past. In: Tomascik T, Mah AJ, Nontji A, Moosa MK (eds) The ecology of the Indonesian seas. Periplus Editions, Hongkong, pp 156–166

    Google Scholar 

  • Kennard JM, James NP (1986) Thrombolites and stromatolites: two distinct types of microbial structures. Palaios 1:492–503

    Article  Google Scholar 

  • Kreisel W (1991) Die pazifische Inselwelt. Wiss. Buchges. Darmstadt, Darmstadt, 430pp

    Google Scholar 

  • Kremer B, Kazmierczak J, Łukomska-Kowalczyk M, Kempe S (2012) Calcification and silicification: fossilization potential of cyanobacteria from stromatolites of Niuafo‘ou’s caldera lakes (Tonga) and implications for the early fossil record. Astrobiology 12:535–548

    Google Scholar 

  • Landmann G (1996) Van See/Türkei: Sedimentologie, Warvenchronologie und Paläoklima der letzten 15 000 Jahre. Dissertation, Faculty of Geosciences, University of Hamburg, 137pp, unpublished

    Google Scholar 

  • Lowenstam H, Margulis L (1980) Evolutionary prerequisites for early Phanerozoic calcareous skeletons. Biosystems 12:27–41

    Article  Google Scholar 

  • Macdonald GA (1948) Notes on Niuafo‘ou. Am J Sci 246:63–77

    Article  Google Scholar 

  • Marmé D (1985) Calcium and cell physiology. Springer, Berlin

    Book  Google Scholar 

  • Marriott RA (1931) The United States naval observatory eclipse expedition to Niuafo‘ou. Pop Astron 39(5):241–285

    ADS  Google Scholar 

  • Martin W, Russell MJ (2003) On the origin of cells: a hypothesis for the evolutionary transitions from abiotic chemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philos Trans R Soc Lond B 358:59–85

    Article  Google Scholar 

  • Maslow VP (1960) Stromatolity. Trudy Geol. Inst. Akad. Nauk SSSR, vyp. 41, Izd. Akad. Nauk SSSR, Moskva

    Google Scholar 

  • Mojzsis SJ, Arrhenius G, McKeegan KD, Harrison TM, Nutman AP, Friend CRL (1996) Evidence for life on Earth before 3,800 million years ago. Nature 384:55–59

    Article  ADS  Google Scholar 

  • Müller OF (1774) Vermium terrestrium et fluviatilium, seu animalium infusoriorum, helminthicorum, et testaceorum, non marinorum, succincta historia. Volumen alterum. Havniae & Lipsiae (Heineck & Faber), pp. I–XXXVI [= 1–36], 1–214, [1–10]

    Google Scholar 

  • Myrow PM, Coniglio M (1991) Origin and diagenesis of cryptobiotic Frutexites in the Chapel Island formation (Vendian to Early Cambrian) of southeast Newfoundland, Canada. Palaios 6:572–585

    Article  Google Scholar 

  • Nunn PD (1994) Oceanic islands. Blackwell, Oxford

    Google Scholar 

  • Parkhurst DL, Thorstenson DC, Plummer LN (1990) PHREEQE: a computer program for geochemical calculation. Conversion and upgrade of the prime version of PHREEQE to IBM PC-compatible systems by Tirisanni, J.V. Glynn, P.D. U.S. Geological Survey Water Research Report, pp 80–96

    Google Scholar 

  • Parson LM, Tiffin DL (1993) Northern Lau Basin: Backarc extension at the leading edge of the Indo-Australian plate. Geo-Marine Lett 13:107–115

    Article  ADS  Google Scholar 

  • Reay A, Rooke JM, Wallace RC, Whelan P (1974) Lavas from Niuafo‘ou Island, Tonga, resemble ocean-floor basalts. Geology 2(12):605–606

    Article  ADS  Google Scholar 

  • Regelous M, Turner S, Falloon TJ, Taylor P, Gamble J, Green T (2008) Mantle dynamics and mantle melting beneath Niuafo‘ou Island and the northern Lau back-arc basin. Contrib Mineral Petrol 156:103–118

    Google Scholar 

  • Reimer A (1995) Hydrochemie und Geochemie der Sedimente und Porenwässer des hochalkalinen Van Sees in der Osttürkei. Dissertation, Faculty of Geosciences, University of Hamburg, unpublished

    Google Scholar 

  • Reimer A, Landmann G, Kempe S (2009) Lake Van, Eastern Anatolia, hydrochemistry and history. Aquat Geochem 15:195–222

    Article  Google Scholar 

  • Ross DA, Degens ET (1974) Recent sediments of Black Sea. In: Degens ET, Ross DA (eds) The Black Sea – geology, chemistry, and biology. American Association of Petroleum Geologists, Tulsa, pp 183–199

    Google Scholar 

  • Schidlowski M, Appel PW, Eichmann R, Junge CE (1979) Carbon isotope geochemistry of the 3.7*109 yr old Isua sediments, West Greenland: implications for the Archean carbon and oxygen cycles. Geochim Cosmochim Acta 43:189–199

    Article  ADS  Google Scholar 

  • Simkiss K (1989) Biomineralization in the context of geological time. Trans R Soc Edinb Earth Scinces 80:193–199

    Article  Google Scholar 

  • Simkiss K, Wilbur KM (1989) Biomineralization. Cell biology and mineral deposition. Academic, San Diego

    Google Scholar 

  • Taylor PW (1991) The geology and petrology of Niuafo‘ou Island, Tonga: subaerial volcanism in an active back-arc basin. Unpublished M.Sc. thesis, Macquarie University, AVI Occasional Report, No. 91/01

    Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell, Oxford

    Book  Google Scholar 

  • Twenhofel WH (1919) Pre-Cambrian and Carboniferous algal deposits. Am J Sci 48:343–346

    Google Scholar 

  • Walter MR, Awramik SA (1979) Frutexites from stromatolites of the gunflint iron-formation of Canada, and its biological affinities. Precambrian Res 9:23–33

    Article  Google Scholar 

  • Zhuravleva ZA (1964) Riphean and Lower Cambrian oncolithes and catagraphes of Siberia and their stratigraphic importance. Transactions of the Geological Institute of Academy of Science USSR 11. Publishing Office “Nauka”, Moscow, 77pp

    Google Scholar 

Download references

Acknowledgements

We would like to thank the following persons, without whom the expedition would not have been as successful as it was: Dipl. Geol. Ralph Hinsch, Geoforschungszentrum, Potsdam, research diver; Mrs. Aleiteisi L. Tangi from the Prime Minister’s Office for managing the official part of our visit; Mr. Semisi Halaholo, Government Representative on Niuafo‘ou, who housed us at his home; Mr. Tu‘a Fifita, “second in command” on the island, who provided transport; Mr. Kulima Lama, who rented his boat to us and transferred it from the wharf to the lake; Mr. To‘aho Lama, who served as a captain for the boat; Mr. Suliano Lama, representative of Royal Tongan Airlines; Mr. Salomon Vaikele, for help in interpretation and showing us around the island; Mr. Sione Eclipse, brother of the Speaker of Tongan Parliament, for his information about the old times on Niuafo‘ou; Sisters Annemarie and Pauline from the Catholic church for inviting us to dinner and bringing us pudding and cake when we were longing for some more European dishes; and Mrs. Siangana Palu, from the Royal Tonga Airlines, for arranging extra flights. We are also indebted to all the help offered by the Heilala Guesthouse at Tofua/Nukualofa and their proprietors, Waltraud and Sven Quick. We acknowledge Cyprian Kulicki, Krzysztof Malkowski, and Zbigniew Strak (all Institute of Paleobiology PAS, Warsaw) for technical assistance. The research was supported by the Deutsche Forschungsgemeinschaft (DFG; Ke 287, 19/1) and the Polish Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Kempe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kempe, S., Kazmierczak, J. (2012). Terrestrial Analogues for Early Planetary Oceans: NIUAFO‘OU CALDERA LAKES (Tonga) and Their Geology, Water Chemistry, and Stromatolites. In: Hanslmeier, A., Kempe, S., Seckbach, J. (eds) Life on Earth and other Planetary Bodies. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4966-5_13

Download citation

Publish with us

Policies and ethics