Advertisement

Stereo-Array Isotope Labeling Method for Studying Protein Structure and Dynamics

  • Yohei Miyanoiri
  • Mitsuhiro Takeda
  • Masatsune KainoshoEmail author
Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 992)

Abstract

The stereo-array isotope labeling (SAIL) method utilizes proteins with isotope labeling patterns optimized with regard to an intended NMR study. The SAIL proteins are prepared by incorporating chemically synthesized amino acids into target proteins, using a cell-free protein synthesis system or a cellular expression system. Over the past decade, the SAIL method has been facilitating a wide variety of new investigations, including high-resolution structure determinations of large proteins and investigations of protein dynamics. In this chapter, the applications of SAIL-related approaches are introduced.

Keywords

Isotope Label Spin Diffusion Indole Ring Sail Method Hydrogen Exchange Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Kainosho M (1997) Isotope labelling of macromolecules for structure determinations. Nat Struct Biol 4:854–857Google Scholar
  2. 2.
    Goto NK, Kay LE (2000) New developments in isotope labeling strategies for protein solution NMR spectroscopy. Curr Opin Struct Biol 10:585–592PubMedCrossRefGoogle Scholar
  3. 3.
    Lian LY, Middleton DA (2001) Labelling approaches for protein structural studies by solution-state and solid-state NMR. Prog Nucl Magn Reson Spectrosc 39:171–190CrossRefGoogle Scholar
  4. 4.
    Ohki S, Kainosho M (2008) Stable isotope labeling methods for protein NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 53:208–226CrossRefGoogle Scholar
  5. 5.
    Ikura M, Kay LE, Bax A (1990) A novel approach for sequential assignment of proton, carbon-13, and nitrogen-15 spectra of larger proteins: heteronuclear triple-resonance three-dimensional NMR spectroscopy. Application to calmodulin. Biochemistry 29:4659–4667PubMedCrossRefGoogle Scholar
  6. 6.
    Kay LE, Ikura M, Tschudin R, Bax A (1990) Three-dimensional triple-resonance NMR spectroscopy of isotopically enriched proteins. J Magn Reson 89:496–514Google Scholar
  7. 7.
    Clore GM, Gronenborn AM (1994) Multidimensional heteronuclear nuclear magnetic resonance of proteins. Methods Enzymol 239:349–363PubMedCrossRefGoogle Scholar
  8. 8.
    Markley JL, Putter I, Jardetzky O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161:1249–1251PubMedCrossRefGoogle Scholar
  9. 9.
    Crespi HL, Rosenberg RM, Katz JJ (1968) Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science 161:795–796PubMedCrossRefGoogle Scholar
  10. 10.
    Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406PubMedCrossRefGoogle Scholar
  11. 11.
    Pervushin K, Riek R, Wider G, Wüthrich K (1997) Attenuated T2relaxation by mutual cancellation of dipole-dipole coupling and chemical shift anisotropy indicates an avenue to NMR structures of very large biological macromolecules in solution. Proc Natl Acad Sci USA 94:12366–12371PubMedCrossRefGoogle Scholar
  12. 12.
    Pervushin K, Riek R, Wider G, Wüthrich K (1998) Transverse relaxation-optimized spectroscopy (TROSY) for NMR studies of aromatic spin systems in 13C-labeled proteins. J Am Chem Soc 120:6394–6400CrossRefGoogle Scholar
  13. 13.
    Tugarinov V, Hwang PM, Ollerenshaw JE, Kay LE (2003) Cross-correlated relaxation enhanced 1H-13C NMR spectroscopy of methyl groups in very high molecular weight proteins and protein complexes. J Am Chem Soc 125:10420–10428PubMedCrossRefGoogle Scholar
  14. 14.
    Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Güntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57PubMedCrossRefGoogle Scholar
  15. 15.
    Kainosho M, Güntert P (2009) SAIL-Stereo-array isotope labeling. Q Rev Biophys 7:1–54Google Scholar
  16. 16.
    Venters RA, Huang CC, Farmer BT 2nd, Trolard R, Spicer LD, Fierke CA (1995) High-level 2H/13C/15N labeling of proteins for NMR studies. J Biomol NMR 5:339–344PubMedCrossRefGoogle Scholar
  17. 17.
    Venters RA, Metzler WJ, Spicer LD, Mueller L, Farmer BT 2nd (1995) Use of 1HN-1HNNOEs to determine protein global folds in perdeuterated proteins. J Am Chem Soc 117:9592–9593CrossRefGoogle Scholar
  18. 18.
    Venters RA, Farmer BT 2nd, Fierke CA, Spicer LD (1996) Characterizing the use of perdeuteration in NMR studies of large proteins: 13C, 15N and 1H assignments of human carbonic anhydrase II. J Mol Biol 264:1101–1116PubMedCrossRefGoogle Scholar
  19. 19.
    LeMaster DM, Richards FM (1988) NMR sequential assignment of Escherichia colithioredoxin utilizing random fractional deuteration. Biochemistry 27:142–150PubMedCrossRefGoogle Scholar
  20. 20.
    Nietlispach D, Clowes RT, Broadhurst RW, Ito Y, Keeler J, Kelly M, Ashurst J, Oschkinat H, Domaille PJ, Laue ED (1996) An approach to the structure determination of larger proteins using triple resonance NMR experiments in conjunction with random fractional deuteration. J Am Chem Soc 118:407–415CrossRefGoogle Scholar
  21. 21.
    Terauchi T, Kobayashi K, Okuma K, Oba M, Nishiyama K, Kainosho M (2008) Stereoselective synthesis of triply isotope-labeled Ser, Cys, and Ala: amino acids for stereoarray isotope labeling technology. Org Lett 10:2785–2787PubMedCrossRefGoogle Scholar
  22. 22.
    Terauchi T, Kamikawai T, Vinogradov MG, Starodubtseva EV, Takeda M, Kainosho M (2011) Synthesis of stereoarray isotope labeled (SAIL) lysine via the “head-to-tail” conversion of SAIL glutamic acid. Org Lett 13:161–163PubMedCrossRefGoogle Scholar
  23. 23.
    Ikeya T, Terauchi T, Güntert P, Kainosho M (2006) Evaluation of stereo-array isotope labeling (SAIL) patterns for automated structural analysis of proteins with CYANA. Magn Reson Chem 44:S152–S157PubMedCrossRefGoogle Scholar
  24. 24.
    Torizawa T, Shimizu M, Taoka M, Miyano H, Kainosho M (2004) Efficient production of isotopically labeled proteins by cell-free synthesis: a practical protocol. J Biomol NMR 30:311–325PubMedCrossRefGoogle Scholar
  25. 25.
    Takeda M, Ikeya T, Güntert P, Kainosho M (2007) Automated structure determination of proteins with the SAIL-FLYA NMR method. Nat Protoc 2:2896–2902PubMedCrossRefGoogle Scholar
  26. 26.
    Takeda M, Chang CK, Ikeya T, Güntert P, Chang YH, Hsu YL, Huang TH, Kainosho M (2008) Solution structure of the C-terminal dimerization domain of SARS coronavirus nucleocapsid protein solved by the SAIL-NMR method. J Mol Biol 380:608–622PubMedCrossRefGoogle Scholar
  27. 27.
    Grzesiek S, Anglister J, Ren H, Bax A (1993) Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115:4369–4370CrossRefGoogle Scholar
  28. 28.
    Güntert P (2003) Automated NMR structure calculation with CYANA. Prog NMR Spectrosc 43:105–125CrossRefGoogle Scholar
  29. 29.
    Takeda M, Sugimori N, Torizawa T, Terauchi T, Ono AM, Yagi H, Yamaguchi Y, Kato K, Ikeya T, Jee J, Güntert P, Aceti DJ, Markley JL, Kainosho M (2008) Structure of the putative 32 kDa myrosinase binding protein from Arabidopsis (At3g16450.1) determined by SAIL-NMR. FEBS J 275:5873–5884PubMedCrossRefGoogle Scholar
  30. 30.
    Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2011) Hydrogen exchange study on the hydroxyl groups of serine and threonine residues in proteins and structure refinement using NOE restraints with polar side-chain groups. J Am Chem Soc 133:17420–17427PubMedCrossRefGoogle Scholar
  31. 31.
    Ikeya T, Takeda M, Yoshida H, Terauchi T, Jee JG, Kainosho M, Güntert P (2009) Automated NMR structure determination of stereo-array isotope labeled ubiquitin from minimal sets of spectra using the SAIL-FLYA system. J Biomol NMR 44:261–272PubMedCrossRefGoogle Scholar
  32. 32.
    Ikeya T, Jee JG, Shigemitsu Y, Hamatsu J, Mishima M, Ito Y, Kainosho M, Güntert P (2011) Exclusively NOESY-based automated NMR assignment and structure determination of proteins. J Biomol NMR 50:137–146PubMedCrossRefGoogle Scholar
  33. 33.
    Wagner G, DeMarco A, Wüthrich K (1976) Dynamics of the aromatic amino acid residues in the globular conformation of the basic pancreatic trypsin inhibitor (BPTI). I. 1H NMR studies. Biophys Struct Mech 2:139–158PubMedCrossRefGoogle Scholar
  34. 34.
    Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2010) Application of SAIL phenylalanine and tyrosine with alternative isotope-labeling patterns for protein structure determination. J Biomol NMR 46:45–49PubMedCrossRefGoogle Scholar
  35. 35.
    Torizawa T, Ono AM, Terauchi T, Kainosho M (2005) NMR assignment methods for the aromatic ring resonances of phenylalanine and tyrosine residues in proteins. J Am Chem Soc 127:12620–12626PubMedCrossRefGoogle Scholar
  36. 36.
    Miyanoiri Y, Takeda M, Jee J, Ono AM, Okuma K, Terauchi T, Kainosho M (2011) Alternative SAIL-Trp for robust aromatic signal assignment and determination of the χ(2) conformation by intra-residue NOEs. J Biomol NMR 51:425–435PubMedCrossRefGoogle Scholar
  37. 37.
    Takeda M, Jee J, Ono AM, Terauchi T, Kainosho M (2009) Hydrogen exchange rate of tyrosine hydroxyl groups in proteins as studied by the deuterium isotope effect on Cζ chemical shifts. J Am Chem Soc 131:18556–18562PubMedCrossRefGoogle Scholar
  38. 38.
    Dunbrack RL Jr, Cohen FE (1997) Bayesian statistical analysis of protein side-chain rotamer preferences. Protein Sci 6:1661–1681PubMedCrossRefGoogle Scholar
  39. 39.
    Takeda M, Jee J, Terauchi T, Kainosho M (2010) Detection of the sulfhydryl groups in proteins with slow hydrogen exchange rates and determination of their proton/deuteron fractionation factors using the deuterium-induced effects on the 13Cβ NMR signals. J Am Chem Soc 132:6254–6260PubMedCrossRefGoogle Scholar
  40. 40.
    Takeda M, Terauchi T, Kainosho M (2012) Conformational analysis by quantitative NOE measurements of the β-proton pairs across individual disulfide bonds in proteins. J Biomol NMR 52:127–139PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Yohei Miyanoiri
    • 1
  • Mitsuhiro Takeda
    • 1
  • Masatsune Kainosho
    • 1
    • 2
    Email author
  1. 1.Structural Biology Research Center, Graduate School of ScienceNagoya UniversityNagoyaJapan
  2. 2.Center for Priority Areas, Graduate School of Science and TechnologyTokyo Metropolitan UniversityHachiojiJapan

Personalised recommendations