Skip to main content

Isotope Labeling Methods for Relaxation Measurements

  • Chapter
  • First Online:
Isotope labeling in Biomolecular NMR

Abstract

Nuclear magnetic spin relaxation has emerged as a powerful technique for probing molecular dynamics. Not only is it possible to use it for determination of time constant(s) for molecular reorientation but it can also be used to characterize internal motions on time scales from picoseconds to seconds. Traditionally, uniformly 15N labeled samples have been used for these experiments but it is clear that this limits the applications. For instance, sensitivity for large systems is dramatically increased if dynamics is probed at methyl groups and structural characterization of low-populated states requires measurements on 13Cα, 13Cβ or 13CO or 1Hα. Unfortunately, homonuclear scalar couplings may lead to artifacts in the latter types of experiments and selective isotopic labeling schemes that only label the desired position are necessary. Both selective and uniform labeling schemes for measurements of relaxation rates for a large number of positions in proteins are discussed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules.1. Theory and range of validity. J Am Chem Soc 104:4546–4559

    Article  CAS  Google Scholar 

  2. Lipari G, Szabo A (1982) Model-free approach to the interpretation of nuclear magnetic-resonance relaxation in macromolecules. 2. Analysis of experimental results. J Am Chem Soc 104:4559–4570

    Article  CAS  Google Scholar 

  3. Clore GM, Szabo A, Bax A, Kay LE, Driscoll PC, Gronenborn AM (1990) Deviations from the simple two-parameter model-free approach to the interpretation of 15N nuclear magnetic relaxation of proteins. J Am Chem Soc 112:4989–4991

    Article  CAS  Google Scholar 

  4. Loria JP, Rance M, Palmer AG 3rd (1999) A relaxation-compensated Carr-Purcell-Meiboom-Gill sequence for characterizing chemical exchange by NMR spectroscopy. J Am Chem Soc 121:2331–2332

    Article  CAS  Google Scholar 

  5. Hansen DF, Vallurupalli P, Kay LE (2008) An improved 15N relaxation dispersion experiment for the measurement of millisecond time-scale dynamics in proteins. J Phys Chem B 112:5898–5904

    Article  PubMed  CAS  Google Scholar 

  6. Akke M, Palmer AG 3rd (1996) Monitoring macromolecular motions on microsecond to millisecond time scales by R-R1constant relaxation time NMR spectroscopy. J Am Chem Soc 118:911–912

    Article  CAS  Google Scholar 

  7. Korzhnev DM, Orekhov VY, Dahlquist FW, Kay LE (2003) Off-resonance Rrelaxation outside of the fast exchange limit: an experimental study of a cavity mutant of T4 lysozyme. J Biomol NMR 26:39–48

    Article  PubMed  CAS  Google Scholar 

  8. Bloch F (1946) Nuclear induction. Phys Rev 70:460–474

    Article  CAS  Google Scholar 

  9. Abragam A (1961) Principles of nuclear magnetism. Oxford University Press, Oxford

    Google Scholar 

  10. Redfield AG (1957) On the theory of relaxation processes. IBM J Res Dev 1:19–31

    Article  Google Scholar 

  11. Kay LE, Torchia DA, Bax A (1989) Backbone dynamics of proteins as studied by 15N inverse detected heteronuclear NMR-spectroscopy – application to staphylococcal nuclease. Biochemistry 28:8972–8979

    Article  PubMed  CAS  Google Scholar 

  12. Farrow NA, Muhandiram R, Singer AU, Pascal SM, Kay CM, Gish G, Shoelson SE, Pawson T, Formankay JD, Kay LE (1994) Backbone dynamics of a free and a phosphopeptide-complexed Src homology-2 domain studied by 15N NMR relaxation. Biochemistry 33:5984–6003

    Article  PubMed  CAS  Google Scholar 

  13. Boehr DD, McElheny D, Dyson HJ, Wright PE (2006) The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313:1638–1642

    Article  PubMed  CAS  Google Scholar 

  14. Sugase K, Dyson HJ, Wright PE (2007) Mechanism of coupled folding and binding of an intrinsically disordered protein. Nature 447:1021–1025

    Article  PubMed  CAS  Google Scholar 

  15. Korzhnev DM, Salvatella X, Vendruscolo M, Di Nardo AA, Davidson AR, Dobson CM, Kay LE (2004) Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430:586–590

    Article  PubMed  CAS  Google Scholar 

  16. Carr HY, Purcell EM (1954) Effects of diffusion on free precession in nuclear magnetic resonance experiments. Phys Rev 94:630–638

    Article  CAS  Google Scholar 

  17. Meiboom S, Gill D (1958) Modified spin-echo method for measuring nuclear relaxation times. Rev Sci Instrum 29:688–691

    Article  CAS  Google Scholar 

  18. Jones GP (1966) Spin–lattice relaxation in the rotating frame: weak collision case. Phys Rev 148:332–335

    Article  CAS  Google Scholar 

  19. Davis DG, Perlman ME, London RE (1994) Direct measurements of the dissociation-rate constant for inhibitor-enzyme complexes via the Tand T2(CPMG) methods. J Magn Reson Ser B 104:266–275

    Article  CAS  Google Scholar 

  20. McConnell HM (1958) Reaction rates by nuclear magnetic resonance. J Chem Phys 28:430–431

    Article  CAS  Google Scholar 

  21. Palmer AG 3rd, Kroenke CD, Loria JP (2001) Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol 339:204–238

    Article  PubMed  CAS  Google Scholar 

  22. Palmer AG 3rd, Massi F (2006) Characterization of the dynamics of biomacromolecules using rotating-frame spin relaxation NMR spectroscopy. Chem Rev 106:1700–1719

    Article  PubMed  CAS  Google Scholar 

  23. Jeener J, Meier MH, Bachmann P, Ernst RR (1979) Investigation of exchange processes by 2-dimensional NMR spectroscopy. J Chem Phys 71:4546–4553

    Article  CAS  Google Scholar 

  24. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302

    Article  PubMed  CAS  Google Scholar 

  25. Shen Y, Lange O, Delaglio F, Rossi P, Aramini JM, Liu GH, Eletsky A, Wu YB, Singarapu KK, Lemak A, Ignatchenko A, Arrowsmith CH, Szyperski T, Montelione GT, Baker D, Bax A (2008) Consistent blind protein structure generation from NMR chemical shift data. Proc Natl Acad Sci USA 105:4685–4690

    Article  PubMed  CAS  Google Scholar 

  26. Cavalli A, Salvatella X, Dobson CM, Vendruscolo M (2007) Protein structure determination from NMR chemical shifts. Proc Natl Acad Sci USA 104:9615–9620

    Article  PubMed  CAS  Google Scholar 

  27. Korzhnev DM, Neudecker P, Mittermaier A, Orekhov VY, Kay LE (2005) Multiple-site exchange in proteins studied with a suite of six NMR relaxation dispersion experiments: an application to the folding of a Fyn SH3 domain mutant. J Am Chem Soc 127:15602–15611

    Article  PubMed  CAS  Google Scholar 

  28. Skrynnikov NR, Konrat R, Muhandiram DR, Kay LE (2000) Relative orientation of peptide planes in proteins is reflected in carbonyl-carbonyl chemical shift anisotropy cross-correlated spin relaxation. J Am Chem Soc 122:7059–7071

    Article  CAS  Google Scholar 

  29. Kloiber K, Konrat R (2000) Measurement of the protein backbone dihedral angle phi based on quantification of remote CSA/DD interference in inter-residue 13C’(i - 1)-13Calpha(i) multiple-quantum coherences. J Biomol NMR 17:265–268

    Article  PubMed  CAS  Google Scholar 

  30. Kloiber K, Konrat R (2000) Differential multiple-quantum relaxation arising from cross-correlated time-modulation of isotropic chemical shifts. J Biomol NMR 18:33–42

    Article  PubMed  CAS  Google Scholar 

  31. Voet D, Voet JG (1995) Biochemistry. Wiley, Hoboken

    Google Scholar 

  32. Gottschalk G (1986) Bacterial metabolism. Springer, New York

    Book  Google Scholar 

  33. Maniatis T, Sambrook J, Fritsch EF (1982) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, pp 68–69

    Google Scholar 

  34. Lundström P, Vallurupalli P, Hansen DF, Kay LE (2009) Isotope labeling methods for studies of excited protein states by relaxation dispersion NMR spectroscopy. Nat Protoc 4:1641–1648

    Article  PubMed  Google Scholar 

  35. Middelberg APJ (2002) Preparative protein refolding. Trends Biotechnol 20:437–443

    Article  PubMed  CAS  Google Scholar 

  36. Mulder FAA, Skrynnikov NR, Hon B, Dahlquist FW, Kay LE (2001) Measurement of slow (μs-ms) time scale dynamics in protein side chains by 15N relaxation dispersion NMR spectroscopy: application to Asn and Gln residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:967–975

    Article  PubMed  CAS  Google Scholar 

  37. Korzhnev DM, Skrynnikov NR, Millet O, Torchia DA, Kay LE (2002) An NMR experiment for the accurate measurement of heteronuclear spin-lock relaxation rates. J Am Chem Soc 124:10743–10753

    Article  PubMed  CAS  Google Scholar 

  38. Ishima R, Baber J, Louis JM, Torchia DA (2004) Carbonyl carbon transverse relaxation dispersion measurements and ms-μs timescale motion in a protein hydrogen bond network. J Biomol NMR 29:187–198

    Article  PubMed  CAS  Google Scholar 

  39. Lundström P, Hansen DF, Kay LE (2008) Measurement of carbonyl chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy: comparison between uniformly and selectively (13)C labeled samples. J Biomol NMR 42:35–47

    Article  PubMed  Google Scholar 

  40. Mulder FAA, Akke M (2003) Carbonyl 13C transverse relaxation measurements to sample protein backbone dynamics. Magn Reson Chem 41:853–865

    Article  CAS  Google Scholar 

  41. Hansen DF, Vallurupalli P, Lundström P, Neudecker P, Kay LE (2008) Probing chemical shifts of invisible states of proteins with relaxation dispersion NMR spectroscopy: how well can we do? J Am Chem Soc 130:2667–2675

    Article  PubMed  CAS  Google Scholar 

  42. Hansen AL, Kay LE (2011) Quantifying millisecond time-scale exchange in proteins by CPMG relaxation dispersion NMR spectroscopy of side-chain carbonyl groups. J Biomol NMR 50:347–355

    Article  PubMed  CAS  Google Scholar 

  43. Wand AJ, Bieber RJ, Urbauer JL, McEvoy RP, Gan ZH (1995) Carbon relaxation in randomly fractionally 13C-enriched proteins. J Magn Reson Ser B 108:173–175

    Article  CAS  Google Scholar 

  44. LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118:9255–9264

    Article  Google Scholar 

  45. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    Article  PubMed  CAS  Google Scholar 

  46. Lundström P, Teilum K, Carstensen T, Bezsonova I, Wiesner S, Hansen DF, Religa TL, Akke M, Kay LE (2007) Fractional 13C enrichment of isolated carbons using [1-13C]- or [2-13C]-glucose facilitates the accurate measurement of dynamics at backbone Cαand side-chain methyl positions in proteins. J Biomol NMR 38:199–212

    Article  PubMed  Google Scholar 

  47. Yamazaki T, Muhandiram R, Kay LE (1994) NMR experiments for the measurement of carbon relaxation properties in highly enriched, uniformly 13C, 15N-labeled proteins – application to 13Cαcarbons. J Am Chem Soc 116:8266–8278

    Article  CAS  Google Scholar 

  48. Lundström P, Akke M (2005) Microsecond protein dynamics measured by 13Cαrotating-frame spin relaxation. Chembiochem 6:1685–1692

    Article  PubMed  Google Scholar 

  49. Lundström P, Lin H, Kay LE (2009) Measuring 13Cβchemical shifts of invisible excited states in proteins by relaxation dispersion NMR spectroscopy. J Biomol NMR 44:139–155

    Article  PubMed  Google Scholar 

  50. Skrynnikov NR, Mulder FAA, Hon B, Dahlquist FW, Kay LE (2001) Probing slow time scale dynamics at methyl-containing side chains in proteins by relaxation dispersion NMR measurements: application to methionine residues in a cavity mutant of T4 lysozyme. J Am Chem Soc 123:4556–4566

    Article  PubMed  CAS  Google Scholar 

  51. Korzhnev DM, Religa TL, Lundström P, Fersht AR, Kay LE (2007) The folding pathway of an FF domain: characterization of an on-pathway intermediate state under folding conditions by 15N, 13Cαand 13C-methyl relaxation dispersion and 1H/2H-exchange NMR spectroscopy. J Mol Biol 372:497–512

    Article  PubMed  CAS  Google Scholar 

  52. Lundström P, Vallurupalli P, Religa TL, Dahlquist FW, Kay LE (2007) A single-quantum methyl 13C-relaxation dispersion experiment with improved sensitivity. J Biomol NMR 38:79–88

    Article  PubMed  Google Scholar 

  53. Mulder FAA, Hon B, Mittermaier A, Dahlquist FW, Kay LE (2002) Slow internal dynamics in proteins: application of NMR relaxation dispersion spectroscopy to methyl groups in a cavity mutant of T4 lysozyme. J Am Chem Soc 124:1443–1451

    Article  PubMed  CAS  Google Scholar 

  54. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of Val, Leu, Ile (δ1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    Article  PubMed  CAS  Google Scholar 

  55. Sprangers R, Kay LE (2007) Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445:618–622

    Article  PubMed  CAS  Google Scholar 

  56. Ruschak AM, Velyvis A, Kay LE (2010) A simple strategy for 13C,1H labeling at the Ile-gamma 2 methyl position in highly deuterated proteins. J Biomol NMR 48:129–135

    Article  PubMed  CAS  Google Scholar 

  57. Brath U, Akke M, Yang DW, Kay LE, Mulder FAA (2006) Functional dynamics of human FKBP12 revealed by methyl 13C rotating frame relaxation dispersion NMR spectroscopy. J Am Chem Soc 128:5718–5727

    Article  PubMed  CAS  Google Scholar 

  58. Hass MA, Hansen DF, Christensen HE, Led JJ, Kay LE (2008) Characterization of conformational exchange of a histidine side chain: protonation, rotamerization, and tautomerization of His61 in plastocyanin from Anabaena variabilis. J Am Chem Soc 130:8460–8470

    Article  PubMed  CAS  Google Scholar 

  59. Teilum K, Brath U, Lundström P, Akke M (2006) Biosynthetic 13C labeling of aromatic side chains in proteins for NMR relaxation measurements. J Am Chem Soc 128:2506–2507

    Article  PubMed  CAS  Google Scholar 

  60. Boyer JA, Lee AL (2008) Monitoring aromatic picosecond to nanosecond dynamics in proteins via (13)C relaxation: expanding perturbation mapping of the rigidifying core mutation, V54A, in Eglin C. Biochemistry 47:4876–4886

    Article  PubMed  CAS  Google Scholar 

  61. Schmidt JM, Blumel M, Löhr F, Rüterjans H (1999) Self-consistent (3)J coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. J Biomol NMR 14:1–12

    Article  PubMed  CAS  Google Scholar 

  62. Ishima R, Torchia DA (2003) Extending the range of amide proton relaxation dispersion experiments in proteins using a constant-time relaxation-compensated CPMG approach. J Biomol NMR 25:243–248

    Article  PubMed  CAS  Google Scholar 

  63. Orekhov VY, Korzhnev DM, Kay LE (2004) Double- and zero-quantum NMR relaxation dispersion experiments sampling millisecond time scale dynamics in proteins. J Am Chem Soc 126:1886–1891

    Article  PubMed  CAS  Google Scholar 

  64. Ishima R, Wingfield PT, Stahl SJ, Kaufman JD, Torchia DA (1998) Using amide 1H and 15N transverse relaxation to detect millisecond time-scale motions in perdeuterated proteins: application to HIV-1 protease. J Am Chem Soc 120:10534–10542

    Article  CAS  Google Scholar 

  65. Lundström P, Akke M (2005) Off-resonance rotating-frame amide proton spin relaxation experiments measuring microsecond chemical exchange in proteins. J Biomol NMR 32:163–173

    Article  PubMed  Google Scholar 

  66. Eichmuller C, Skrynnikov NR (2005) A new amide proton Rexperiment permits accurate characterization of microsecond time-scale conformational exchange. J Biomol NMR 32:281–293

    Article  PubMed  Google Scholar 

  67. Lundström P, Hansen DF, Vallurupalli P, Kay LE (2009) Accurate measurement of alpha proton chemical shifts of excited protein states by relaxation dispersion NMR spectroscopy. J Am Chem Soc 131:1915–1926

    Article  PubMed  Google Scholar 

  68. Otten R, Villali J, Kern D, Mulder FAA (2010) Probing microsecond time scale dynamics in proteins by methyl 1H Carr-Purcell-Meiboom-Gill relaxation dispersion NMR measurements. Application to activation of the signaling protein NtrC(r). J Am Chem Soc 132:17004–17014

    Article  PubMed  CAS  Google Scholar 

  69. LeMaster DM (1990) Deuterium labeling in NMR structural analysis of larger proteins. Q Rev Biophys 23:133–174

    Article  PubMed  CAS  Google Scholar 

  70. Baldwin AJ, Religa TL, Hansen DF, Bouvignies G, Kay LE (2010) 13CHD2methyl group probes of millisecond time scale exchange in proteins by 1H relaxation dispersion: an application to proteasome gating residue dynamics. J Am Chem Soc 132:10992–10995

    Article  PubMed  CAS  Google Scholar 

  71. Millet O, Muhandiram DR, Skrynnikov NR, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 1. Measurement of five relaxation rates per deuteron in 13C-labeled and fractionally 2H-enriched proteins in solution. J Am Chem Soc 124:6439–6448

    Article  PubMed  CAS  Google Scholar 

  72. Skrynnikov NR, Millet O, Kay LE (2002) Deuterium spin probes of side-chain dynamics in proteins. 2. Spectral density mapping and identification of nanosecond time-scale side-chain motions. J Am Chem Soc 124:6449–6460

    Article  PubMed  CAS  Google Scholar 

  73. Frederick KK, Marlow MS, Valentine KG, Wand AJ (2007) Conformational entropy in molecular recognition by proteins. Nature 448:325–329

    Article  PubMed  CAS  Google Scholar 

  74. Kigawa T, Muto Y, Yokoyama S (1995) Cell-free synthesis and amino acid-selective stable isotope labeling of proteins for NMR analysis. J Biomol NMR 6:129–134

    Article  PubMed  CAS  Google Scholar 

  75. Schwarz D, Daley D, Beckhaus T, Dotsch V, Bernhard F (2010) Cell-free expression profiling of E. coli inner membrane proteins. Proteomics 10:1762–1779

    Article  PubMed  CAS  Google Scholar 

  76. Kainosho M, Torizawa T, Iwashita Y, Terauchi T, Ono AM, Guntert P (2006) Optimal isotope labelling for NMR protein structure determinations. Nature 440:52–57

    Article  PubMed  CAS  Google Scholar 

  77. Korzhnev DM, Religa TL, Banachewicz W, Fersht AR, Kay LE (2010) A transient and low-populated protein-folding intermediate at atomic resolution. Science 329:1312–1316

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Lundström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lundström, P., Ahlner, A., Blissing, A.T. (2012). Isotope Labeling Methods for Relaxation Measurements. In: Atreya, H. (eds) Isotope labeling in Biomolecular NMR. Advances in Experimental Medicine and Biology, vol 992. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4954-2_4

Download citation

Publish with us

Policies and ethics