Skip to main content

Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 992))

Abstract

In this chapter, we summarize the isotopic labeling strategies used to obtain high-quality solution and solid-state NMR spectra of biological samples, with emphasis on integral membrane proteins (IMPs). While solution NMR is used to study IMPs under fast tumbling conditions, such as in the presence of detergent micelles or isotropic bicelles, solid-state NMR is used to study the structure and orientation of IMPs in lipid vesicles and bilayers. In spite of the tremendous progress in biomolecular NMR spectroscopy, the homogeneity and overall quality of the sample is still a substantial obstacle to overcome. Isotopic labeling is a major avenue to simplify overlapped spectra by either diluting the NMR active nuclei or allowing the resonances to be separated in multiple dimensions. In the following we will discuss isotopic labeling approaches that have been successfully used in the study of IMPs by solution and solid-state NMR spectroscopy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

IMP:

Integral Membrane Protein

SSNMR:

Solid-State NMR

O-SSNMR:

Oriented SSNMR

MAS-SSNMR:

Magic-Angle-Spinning SSNMR

PISEMA:

Polarization Inversion Spin Exchange at Magic Angle

References

  1. Crespi HL, Katz JJ (1969) High resolution proton magnetic resonance studies of fully deuterated and isotope hybrid proteins. Nature 224:560–562

    PubMed  CAS  Google Scholar 

  2. Crespi HL, Rosenberg RM, Katz JJ (1968) Proton magnetic resonance of proteins fully deuterated except for 1H-leucine side chains. Science 161:795–796

    PubMed  CAS  Google Scholar 

  3. Putter I, Barreto A, Markley JL, Jardetzky O (1969) Nuclear magnetic resonance studies of the structure and binding sites of enzymes. X. Preparation of selectively deuterated analogs of staphylococcal nuclease. Proc Natl Acad Sci USA 64:1396–1403

    PubMed  CAS  Google Scholar 

  4. Markley JL, Putter I, Jardetzky O (1968) High-resolution nuclear magnetic resonance spectra of selectively deuterated staphylococcal nuclease. Science 161:1249–1251

    PubMed  CAS  Google Scholar 

  5. Ohki S, Kainosho M (2008) Stable isotope labeling methods for protein NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 53:208–226

    CAS  Google Scholar 

  6. Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR (2009) Recent advances in the application of solution NMR spectroscopy to multi-span integral membrane proteins. Prog Nucl Magn Reson Spectrosc 55:335–360

    PubMed  CAS  Google Scholar 

  7. Ruschak AM, Kay LE (2010) Methyl groups as probes of supra-molecular structure, dynamics and function. J Biomol NMR 46:75–87

    PubMed  CAS  Google Scholar 

  8. Wallin E, von Heijne G (1998) Genome-wide analysis of integral membrane proteins from eubacterial, archaean, and eukaryotic organisms. Protein Sci 7:1029–1038

    PubMed  CAS  Google Scholar 

  9. Ahram M, Litou ZI, Fang R, Al-Tawallbeh G (2006) Estimation of membrane proteins in the human proteome. In Silico Biol 6:379–386

    PubMed  CAS  Google Scholar 

  10. Gilman AG (1987) G proteins: transducers of receptor-generated signals. Annu Rev Biochem 56:615–649

    PubMed  CAS  Google Scholar 

  11. Wettschureck N, Offermanns S (2005) Mammalian G proteins and their cell type specific functions. Physiol Rev 85:1159–1204

    PubMed  CAS  Google Scholar 

  12. Hille B (2001) Ion channels of excitable membranes. Sinauer Associates, Sunderland, pp 814, [8]

    Google Scholar 

  13. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89:1341–1378

    PubMed  CAS  Google Scholar 

  14. Traaseth NJ et al (2008) Structural and dynamic basis of phospholamban and sarcolipin inhibition of ca(2+)-ATPase. Biochemistry 47:3–13

    PubMed  CAS  Google Scholar 

  15. Page RC et al (2006) Comprehensive evaluation of solution nuclear magnetic resonance spectroscopy sample preparation for helical integral membrane proteins. J Struct Funct Genomics 7:51–64

    PubMed  CAS  Google Scholar 

  16. Eshaghi S et al (2005) An efficient strategy for high-throughput expression screening of recombinant integral membrane proteins. Protein Sci 14:676–683

    PubMed  CAS  Google Scholar 

  17. Tate CG (2001) Overexpression of mammalian integral membrane proteins for structural studies. FEBS Lett 504:94–98

    PubMed  CAS  Google Scholar 

  18. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor

    Google Scholar 

  19. Ross A et al (2004) Optimised fermentation strategy for 13C/15N recombinant protein labelling in Escherichia coli for NMR-structure analysis. J Biotechnol 108:31–39

    PubMed  CAS  Google Scholar 

  20. Cai M et al (1998) An efficient and cost-effective isotope labeling protocol for proteins expressed in Escherichia coli. J Biomol NMR 11:97–102

    PubMed  CAS  Google Scholar 

  21. Marley J, Lu M, Bracken C (2001) A method for efficient isotopic labeling of recombinant proteins. J Biomol NMR 20:71–75

    PubMed  CAS  Google Scholar 

  22. Studier FW (2005) Protein production by auto-induction in high density shaking cultures. Protein Expr Purif 41:207–234

    PubMed  CAS  Google Scholar 

  23. Suzuki M, Mao L, Inouye M (2007) Single protein production (SPP) system in Escherichia coli. Nat Protoc 2:1802–1810

    PubMed  CAS  Google Scholar 

  24. Schneider WM et al (2010) Efficient condensed-phase production of perdeuterated soluble and membrane proteins. J Struct Funct Genomics 11:143–154

    PubMed  CAS  Google Scholar 

  25. Baneyx F, Mujacic M (2004) Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22:1399–1408

    PubMed  CAS  Google Scholar 

  26. Goldbourt A, Day LA, McDermott AE (2007) Assignment of congested NMR spectra: carbonyl backbone enrichment via the entner-doudoroff pathway. J Magn Reson 189:157–165

    PubMed  CAS  Google Scholar 

  27. Kunji ER, Slotboom DJ, Poolman B (2003) Lactococcus lactis as host for overproduction of functional membrane proteins. Biochim Biophys Acta 1610:97–108

    PubMed  CAS  Google Scholar 

  28. Janvilisri T, Shahi S, Venter H, Balakrishnan L, van Veen HW (2005) Arginine-482 is not essential for transport of antibiotics, primary bile acids and unconjugated sterols by the human breast cancer resistance protein (ABCG2). Biochem J 385:419–426

    PubMed  CAS  Google Scholar 

  29. Koth CM, Payandeh J (2009) Strategies for the cloning and expression of membrane proteins. Adv Protein Chem Struct Biol 76:43–86

    PubMed  CAS  Google Scholar 

  30. Lin-Cereghino J, Lin-Cereghino GP (2007) Vectors and strains for expression. Methods Mol Biol 389:11–26

    PubMed  CAS  Google Scholar 

  31. Gossert AD et al (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51(4):449–456

    PubMed  CAS  Google Scholar 

  32. Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53

    PubMed  CAS  Google Scholar 

  33. Stewart JM, Young JD (1984) Solid phase peptide synthesis. Pierce Chemical Co, Rockford, p 176

    Google Scholar 

  34. Klammt C et al (2007) Cell-free production of G protein-coupled receptors for functional and structural studies. J Struct Biol 158:482–493

    PubMed  CAS  Google Scholar 

  35. Klammt C et al (2006) Cell-free expression as an emerging technique for the large scale production of integral membrane protein. FEBS J 273:4141–4153

    PubMed  CAS  Google Scholar 

  36. Klammt C et al (2004) High level cell-free expression and specific labeling of integral membrane proteins. Eur J Biochem 271:568–580

    PubMed  CAS  Google Scholar 

  37. Wu PS et al (2006) Amino-acid type identification in 15N-HSQC spectra by combinatorial selective 15N-labelling. J Biomol NMR 34:13–21

    PubMed  CAS  Google Scholar 

  38. Ozawa K, Wu PS, Dixon NE, Otting G (2006) N-labelled proteins by cell-free protein synthesis. strategies for high-throughput NMR studies of proteins and protein-ligand complexes. FEBS J 273:4154–4159

    PubMed  CAS  Google Scholar 

  39. Jeremy Craven C, Al-Owais M, Parker MJ (2007) A systematic analysis of backbone amide assignments achieved via combinatorial selective labelling of amino acids. J Biomol NMR 38:151–159

    PubMed  CAS  Google Scholar 

  40. Parker MJ, Aulton-Jones M, Hounslow AM, Craven CJ (2004) A combinatorial selective labeling method for the assignment of backbone amide NMR resonances. J Am Chem Soc 126:5020–5021

    PubMed  CAS  Google Scholar 

  41. Kainosho M, Guntert P (2009) SAIL – stereo-array isotope labeling. Q Rev Biophys 42:247–300

    PubMed  CAS  Google Scholar 

  42. Xie H, Guo XM, Chen H (2009) Making the most of fusion tags technology in structural characterization of membrane proteins. Mol Biotechnol 42:135–145

    PubMed  CAS  Google Scholar 

  43. Waugh DS (2005) Making the most of affinity tags. Trends Biotechnol 23:316–320

    PubMed  CAS  Google Scholar 

  44. Arnau J, Lauritzen C, Petersen GE, Pedersen J (2006) Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expr Purif 48:1–13

    Google Scholar 

  45. Kapust RB, Waugh DS (2000) Controlled intracellular processing of fusion proteins by TEV protease. Protein Expr Purif 19:312–318

    PubMed  CAS  Google Scholar 

  46. Abdullah N, Chase HA (2005) Removal of poly-histidine fusion tags from recombinant proteins purified by expanded bed adsorption. Biotechnol Bioeng 92:501–513

    PubMed  CAS  Google Scholar 

  47. Jenny RJ, Mann KG, Lundblad RL (2003) A critical review of the methods for cleavage of fusion proteins with thrombin and factor xa. Protein Expr Purif 31:1–11

    PubMed  CAS  Google Scholar 

  48. Kapust RB, Tozser J, Copeland TD, Waugh DS (2002) The P1′ specificity of tobacco etch virus protease. Biochem Biophys Res Commun 294:949–955

    PubMed  CAS  Google Scholar 

  49. Buck B et al (2003) Overexpression, purification, and characterization of recombinant ca-ATPase regulators for high-resolution solution and solid-state NMR studies. Protein Expr Purif 30:253–261

    PubMed  CAS  Google Scholar 

  50. Hu J et al (2007) Structural biology of transmembrane domains: efficient production and characterization of transmembrane peptides by NMR. Protein Sci 16:2153–2165

    PubMed  CAS  Google Scholar 

  51. McIntosh LP, Dahlquist FW (1990) Biosynthetic incorporation of 15N and 13C for assignment and interpretation of nuclear magnetic resonance spectra of proteins. Q Rev Biophys 23:1–38

    PubMed  CAS  Google Scholar 

  52. Hoogstraten CG, Johnson JE (2008) Metabolic labeling: taking advantage of bacterial pathways to prepare spectroscopically useful isotope patterns in proteins and nucleic acids. Concepts Magn Reson A 32A:34–55

    CAS  Google Scholar 

  53. Fiaux J, Bertelsen EB, Horwich AL, Wuthrich K (2004) Uniform and residue-specific 15N-labeling of proteins on a highly deuterated background. J Biomol NMR 29:289–297

    PubMed  CAS  Google Scholar 

  54. Suzuki H et al (2005) Isotopic labeling of proteins by utilizing photosynthetic bacteria. Anal Biochem 347:324–326

    PubMed  CAS  Google Scholar 

  55. LeMaster DM, LaIuppa JC, Kushlan DM (1994) Differential deuterium isotope shifts and one-bond 1H-13C scalar couplings in the conformational analysis of protein glycine residues. J Biomol NMR 4:863–870

    PubMed  CAS  Google Scholar 

  56. Grzesiek S, Anglister J, Ren H, Bax A (1993) Carbon-13 line narrowing by deuterium decoupling in deuterium/carbon-13/nitrogen-15 enriched proteins. Application to triple resonance 4D J connectivity of sequential amides. J Am Chem Soc 115:4369–4370

    CAS  Google Scholar 

  57. Gardner KH, Kay LE (1998) The use of 2H, 13C, 15N multidimensional NMR to study the structure and dynamics of proteins. Annu Rev Biophys Biomol Struct 27:357–406

    PubMed  CAS  Google Scholar 

  58. White SH, Wimley WC (1999) Membrane protein folding and stability: physical principles. Annu Rev Biophys Biomol Struct 28:319–365

    PubMed  CAS  Google Scholar 

  59. Veglia G, Zeri AC, Ma C, Opella SJ (2002) Deuterium/hydrogen exchange factors measured by solution nuclear magnetic resonance spectroscopy as indicators of the structure and topology of membrane proteins. Biophys J 82:2176–2183

    PubMed  CAS  Google Scholar 

  60. Oxenoid K, Kim HJ, Jacob J, Sonnichsen FD, Sanders CR (2004) NMR assignments for a helical 40 kDa membrane protein. J Am Chem Soc 126:5048–5049

    PubMed  CAS  Google Scholar 

  61. Katz JJ, Crespi HL (1966) Deuterated organisms: cultivation and uses. Science 151:1187–1194

    PubMed  CAS  Google Scholar 

  62. Meilleur F, Contzen J, Myles DA, Jung C (2004) Structural stability and dynamics of hydrogenated and perdeuterated cytochrome P450cam (CYP101). Biochemistry 43:8744–8753

    PubMed  CAS  Google Scholar 

  63. Brockwell D et al (2001) Physicochemical consequences of the perdeuteriation of glutathione S-transferase from S. japonicum. Protein Sci 10:572–580

    PubMed  CAS  Google Scholar 

  64. Schubert M, Smalla M, Schmieder P, Oschkinat H (1999) MUSIC in triple-resonance experiments: amino acid type-selective (1)H-(15)N correlations. J Magn Reson 141:34–43

    PubMed  CAS  Google Scholar 

  65. Muchmore DC, McIntosh LP, Russell CB, Anderson DE, Dahlquist FW (1989) Expression and nitrogen-15 labeling of proteins for proton and nitrogen-15 nuclear magnetic resonance. Methods Enzymol 177:44–73

    PubMed  CAS  Google Scholar 

  66. Waugh DS (1996) Genetic tools for selective labeling of proteins with alpha-15N-amino acids. J Biomol NMR 8:184–192

    PubMed  CAS  Google Scholar 

  67. LeMaster DM, Kushlan DM (1996) Dynamical mapping of E. coli thioredoxin via 13C NMR relaxation analysis. J Am Chem Soc 118:9255–9264

    Google Scholar 

  68. Lin MT et al (2011) A rapid and robust method for selective isotope labeling of proteins. Methods 55:370–378

    PubMed  CAS  Google Scholar 

  69. Vance CK, Kang YM, Miller AF (1997) Selective 15N labeling and direct observation by NMR of the active-site glutamine of fe-containing superoxide dismutase. J Biomol NMR 9:201–206

    PubMed  CAS  Google Scholar 

  70. Maslennikov I et al (2010) Membrane domain structures of three classes of histidine kinase receptors by cell-free expression and rapid NMR analysis. Proc Natl Acad Sci USA 107:10902–10907

    PubMed  CAS  Google Scholar 

  71. Sobhanifar S et al (2010) Cell-free expression and stable isotope labelling strategies for membrane proteins. J Biomol NMR 46:33–43

    PubMed  CAS  Google Scholar 

  72. Makino S, Goren MA, Fox BG, Markley JL (2010) Cell-free protein synthesis technology in NMR high-throughput structure determination. Methods Mol Biol 607:127–147

    PubMed  CAS  Google Scholar 

  73. Reckel S et al (2008) Transmembrane segment enhanced labeling as a tool for the backbone assignment of alpha-helical membrane proteins. Proc Natl Acad Sci USA 105:8262–8267

    PubMed  CAS  Google Scholar 

  74. Cellitti SE et al (2008) In vivo incorporation of unnatural amino acids to probe structure, dynamics, and ligand binding in a large protein by nuclear magnetic resonance spectroscopy. J Am Chem Soc 130:9268–9281

    PubMed  CAS  Google Scholar 

  75. Jones DH et al (2010) Site-specific labeling of proteins with NMR-active unnatural amino acids. J Biomol NMR 46:89–100

    PubMed  CAS  Google Scholar 

  76. Jackson JC, Hammill JT, Mehl RA (2007) Site-specific incorporation of a (19)F-amino acid into proteins as an NMR probe for characterizing protein structure and reactivity. J Am Chem Soc 129:1160–1166

    PubMed  CAS  Google Scholar 

  77. Xie J, Schultz PG (2005) Adding amino acids to the genetic repertoire. Curr Opin Chem Biol 9:548–554

    PubMed  CAS  Google Scholar 

  78. Xie J, Schultz PG (2005) An expanding genetic code. Methods 36:227–238

    PubMed  CAS  Google Scholar 

  79. Gerig JT (1994) Fluorine NMR of proteins. Prog Nucl Magn Reson Spectrosc 26(Part 4):293–370

    CAS  Google Scholar 

  80. Danielson MA, Falke JJ (1996) Use of 19F NMR to probe protein structure and conformational changes. Annu Rev Biophys Biomol Struct 25:163–195

    PubMed  CAS  Google Scholar 

  81. Prosser RS, Luchette PA, Westerman PW (2000) Using O2 to probe membrane immersion depth by 19F NMR. Proc Natl Acad Sci USA 97:9967–9971

    PubMed  CAS  Google Scholar 

  82. Kitevski-LeBlanc JL, Evanics F, Prosser RS (2009) Approaches for the measurement of solvent exposure in proteins by 19F NMR. J Biomol NMR 45:255–264

    PubMed  CAS  Google Scholar 

  83. Skrisovska L, Schubert M, Allain FH (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46:51–65

    PubMed  CAS  Google Scholar 

  84. Goto NK, Gardner KH, Mueller GA, Willis RC, Kay LE (1999) A robust and cost-effective method for the production of val, leu, ile (delta 1) methyl-protonated 15N-, 13C-, 2H-labeled proteins. J Biomol NMR 13:369–374

    PubMed  CAS  Google Scholar 

  85. Janin J, Miller S, Chothia C (1988) Surface, subunit interfaces and interior of oligomeric proteins. J Mol Biol 204:155–164

    PubMed  CAS  Google Scholar 

  86. Miller S, Janin J, Lesk AM, Chothia C (1987) Interior and surface of monomeric proteins. J Mol Biol 196:641–656

    PubMed  CAS  Google Scholar 

  87. Miller S, Lesk AM, Janin J, Chothia C (1987) The accessible surface area and stability of oligomeric proteins. Nature 328:834–836

    PubMed  CAS  Google Scholar 

  88. Imai S, Osawa M, Takeuchi K, Shimada I (2010) Structural basis underlying the dual gate properties of KcsA. Proc Natl Acad Sci USA 107:6216–6221

    PubMed  CAS  Google Scholar 

  89. Hiller S et al (2008) Solution structure of the integral human membrane protein VDAC-1 in detergent micelles. Science 321:1206–1210

    PubMed  CAS  Google Scholar 

  90. Verardi R, Shi L, Traaseth NJ, Walsh N, Veglia G (2011) Structural topology of phospholamban pentamer in lipid bilayers by a hybrid solution and solid-state NMR method. Proc Natl Acad Sci USA 108:9101–9106

    PubMed  CAS  Google Scholar 

  91. Oxenoid K, Chou JJ (2005) The structure of phospholamban pentamer reveals a channel-like architecture in membranes. Proc Natl Acad Sci USA 102:10870–10875

    PubMed  CAS  Google Scholar 

  92. Zhou Y et al (2008) NMR solution structure of the integral membrane enzyme DsbB: functional insights into DsbB-catalyzed disulfide bond formation. Mol Cell 31:896–908

    PubMed  CAS  Google Scholar 

  93. Zhou DH et al (2007) Solid-state protein-structure determination with proton-detected triple-resonance 3D magic-angle-spinning NMR spectroscopy. Angew Chem Int Ed Engl 46:8380–8383

    PubMed  CAS  Google Scholar 

  94. Hologne M, Faelber K, Diehl A, Reif B (2005) Characterization of dynamics of perdeuterated proteins by MAS solid-state NMR. J Am Chem Soc 127:11208–11209

    PubMed  CAS  Google Scholar 

  95. Paulson EK et al (2003) Sensitive high resolution inverse detection NMR spectroscopy of proteins in the solid state. J Am Chem Soc 125:15831–15836

    PubMed  CAS  Google Scholar 

  96. Huang KY, Siemer AB, McDermott AE (2011) Homonuclear mixing sequences for perdeuterated proteins. J Magn Reson 208:122–127

    PubMed  CAS  Google Scholar 

  97. Reif B et al (2012) Ultra-high resolution in MAS solid-state NMR of perdeuterated proteins: implications for structure and dynamics. J Magn Reson 216:1–12

    PubMed  CAS  Google Scholar 

  98. Wickramasinghe NP, Kotecha M, Samoson A, Past J, Ishii Y (2007) Sensitivity enhancement in (13)C solid-state NMR of protein microcrystals by use of paramagnetic metal ions for optimizing (1)H T(1) relaxation. J Magn Reson 184:350–356

    PubMed  CAS  Google Scholar 

  99. Akbey U et al (2010) Dynamic nuclear polarization of deuterated proteins. Angew Chem Int Ed Engl 49:7803–7806

    PubMed  CAS  Google Scholar 

  100. Lalli D et al (2011) Three-dimensional deuterium-carbon correlation experiments for high-resolution solid-state MAS NMR spectroscopy of large proteins. J Biomol NMR 51:477–485

    PubMed  CAS  Google Scholar 

  101. Gopinath T, Veglia G (2012) Dual acquisition magic-angle spinning solid-state NMR-spectroscopy: simultaneous acquisition of multidimensional spectra of biomacromolecules. Angew Chem Int Ed Engl 51:2731–2735

    PubMed  CAS  Google Scholar 

  102. Chekmenev EY et al (2006) Ion-binding study by 17O solid-state NMR spectroscopy in the model peptide gly-gly-gly at 19.6 T. J Am Chem Soc 128:9849–9855

    PubMed  CAS  Google Scholar 

  103. Strandberg E et al (2004) Tilt angles of transmembrane model peptides in oriented and non-oriented lipid bilayers as determined by 2H solid-state NMR. Biophys J 86:3709–3721

    PubMed  CAS  Google Scholar 

  104. Cady SD, Goodman C, Tatko CD, DeGrado WF, Hong M (2007) Determining the orientation of uniaxially rotating membrane proteins using unoriented samples: a 2H, 13C, AND 15N solid-state NMR investigation of the dynamics and orientation of a transmembrane helical bundle. J Am Chem Soc 129:5719–5729

    PubMed  CAS  Google Scholar 

  105. Mani R et al (2006) Membrane-bound dimer structure of a beta-hairpin antimicrobial peptide from rotational-echo double-resonance solid-state NMR. Biochemistry 45:8341–8349

    PubMed  CAS  Google Scholar 

  106. Buffy JJ, Waring AJ, Hong M (2005) Determination of peptide oligomerization in lipid bilayers using 19F spin diffusion NMR. J Am Chem Soc 127:4477–4483

    PubMed  CAS  Google Scholar 

  107. Kandasamy SK et al (2009) Solid-state NMR and molecular dynamics simulations reveal the oligomeric ion-channels of TM2-GABA(A) stabilized by intermolecular hydrogen bonding. Biochim Biophys Acta 1788:686–695

    PubMed  CAS  Google Scholar 

  108. Liu W, Fei JZ, Kawakami T, Smith SO (2007) Structural constraints on the transmembrane and juxtamembrane regions of the phospholamban pentamer in membrane bilayers: Gln29 and Leu52. Biochim Biophys Acta 1768:2971–2978

    PubMed  CAS  Google Scholar 

  109. Jaroniec CP, MacPhee CE, Astrof NS, Dobson CM, Griffin RG (2002) Molecular conformation of a peptide fragment of transthyretin in an amyloid fibril. Proc Natl Acad Sci USA 99:16748–16753

    PubMed  CAS  Google Scholar 

  110. Jaroniec CP et al (2004) High-resolution molecular structure of a peptide in an amyloid fibril determined by magic angle spinning NMR spectroscopy. Proc Natl Acad Sci USA 101:711–716

    PubMed  CAS  Google Scholar 

  111. Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39:1–55

    PubMed  CAS  Google Scholar 

  112. Doherty T, Su Y, Hong M (2010) High-resolution orientation and depth of insertion of the voltage-sensing S4 helix of a potassium channel in lipid bilayers. J Mol Biol 401:642–652

    PubMed  CAS  Google Scholar 

  113. Gustavsson M, Traaseth NJ, Veglia G (2011) Probing ground and excited states of phospholamban in model and native lipid membranes by magic angle spinning NMR spectroscopy. Biochim Biophys Acta 1818:146–153

    PubMed  Google Scholar 

  114. Vuister GW, Yamazaki T, Torchia DA, Bax A (1993) Measurement of two- and three-bond 13C-1H J couplings to the C delta carbons of leucine residues in staphylococcal nuclease. J Biomol NMR 3:297–306

    PubMed  CAS  Google Scholar 

  115. Traaseth NJ, Veglia G (2011) Frequency-selective heteronuclear dephasing and selective carbonyl labeling to deconvolute crowded spectra of membrane proteins by magic angle spinning NMR. J Magn Reson 211:18–24

    PubMed  CAS  Google Scholar 

  116. Baldus M, Petkova AT, Herzfeld J, Griffin RG (1998) Cross polarization in the tilted frame: assignment and spectral simplification in heteronuclear spin systems. Mol Phys 95:1197–1207

    CAS  Google Scholar 

  117. Banigan and Traaseth (2012), J Phys Chem B, 116(24):7138-44

    Google Scholar 

  118. McDowell LM, Lee M, McKay RA, Anderson KS, Schaefer J (1996) Intersubunit communication in tryptophan synthase by carbon-13 and fluorine-19 REDOR NMR. Biochemistry 35:3328–3334

    PubMed  CAS  Google Scholar 

  119. Krishnarjuna B, Jaipuria G, Thakur A, D’Silva P, Atreya HS (2011) Amino acid selective unlabeling for sequence specific resonance assignments in proteins. J Biomol NMR 49:39–51

    PubMed  CAS  Google Scholar 

  120. Vuister GW, Kim S, Wu C, Bax A (1994) 2D and 3D NMR study of phenylalanine residues in proteins by reverse isotopic labeling. J Am Chem Soc 116:9206–9210

    CAS  Google Scholar 

  121. Bystrov VF (1976) Spin—spin coupling and the conformational states of peptide systems. Prog Nucl Magn Reson Spectrosc 10:41–82

    Google Scholar 

  122. Hong M (1999) Resonance assignment of 13C/15N labeled solid proteins by two- and three-dimensional magic-angle-spinning NMR. J Biomol NMR 15:1–14

    PubMed  CAS  Google Scholar 

  123. Takeuchi K, Gal M, Takahashi H, Shimada I, Wagner G (2011) HNCA-TOCSY-CANH experiments with alternate (13)C- (12)C labeling: a set of 3D experiment with unique supra-sequential information for mainchain resonance assignment. J Biomol NMR 49:17–26

    PubMed  CAS  Google Scholar 

  124. Wand AJ, Bieber RJ, Urbauer JL, McEvoy RP, Gan Z (1995) Carbon relaxation in randomly fractionally 13C-enriched proteins. J Magn Reson B 108:173–175

    PubMed  CAS  Google Scholar 

  125. Hong M, Jakes K (1999) Selective and extensive 13C labeling of a membrane protein for solid-state NMR investigations. J Biomol NMR 14:71–74

    PubMed  CAS  Google Scholar 

  126. Higman VA et al (2009) Assigning large proteins in the solid state: a MAS NMR resonance assignment strategy using selectively and extensively 13C-labelled proteins. J Biomol NMR 44:245–260

    PubMed  CAS  Google Scholar 

  127. Castellani F et al (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420:98–102

    PubMed  CAS  Google Scholar 

  128. Lundstrom P et al (2007) Fractional 13C enrichment of isolated carbons using [1–13C]- or [2–13C]-glucose facilitates the accurate measurement of dynamics at backbone calpha and side-chain methyl positions in proteins. J Biomol NMR 38:199–212

    PubMed  Google Scholar 

  129. McDermott A (2009) Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu Rev Biophys 38:385–403

    PubMed  CAS  Google Scholar 

  130. Naito A (2009) Structure elucidation of membrane-associated peptides and proteins in oriented bilayers by solid-state NMR spectroscopy. Solid State Nucl Magn Reson 36:67–76

    PubMed  CAS  Google Scholar 

  131. Marassi FM et al (2011) Structure determination of membrane proteins in five easy pieces. Methods 55:363–369

    PubMed  CAS  Google Scholar 

  132. Bowie JU (2011) Membrane protein folding: how important are hydrogen bonds? Curr Opin Struct Biol 21:42–49

    PubMed  CAS  Google Scholar 

  133. Bertram R et al (2003) Atomic refinement with correlated solid-state NMR restraints. J Magn Reson 163:300–309

    PubMed  CAS  Google Scholar 

  134. Traaseth NJ et al (2009) Structure and topology of monomeric phospholamban in lipid membranes determined by a hybrid solution and solid-state NMR approach. Proc Natl Acad Sci USA 106:10165–10170

    PubMed  CAS  Google Scholar 

  135. Shi L et al (2009) A refinement protocol to determine structure, topology, and depth of insertion of membrane proteins using hybrid solution and solid-state NMR restraints. J Biomol NMR 44:195–205

    PubMed  CAS  Google Scholar 

  136. Straus SK, Scott WR, Schwieters CD, Marvin DA (2011) Consensus structure of Pf1 filamentous bacteriophage from X-ray fibre diffraction and solid-state NMR. Eur Biophys J 40:221–234

    PubMed  CAS  Google Scholar 

  137. Vostrikov VV, Grant CV, Opella SJ, Koeppe 2nd RE (2011) On the combined analysis of 2H and 15N/1H solid-state NMR data for determination of transmembrane peptide orientation and dynamics, Biophys J 101:2939–2947

    PubMed  CAS  Google Scholar 

  138. Wu CH, Ramamoorthy A, Opella SJ (1994) High-resolution heteronuclear dipolar solid-state NMR spectroscopy. J Magn Reson Ser A 109:270–272

    Google Scholar 

  139. Sinha N et al (2007) Tailoring 13C labeling for triple-resonance solid-state NMR experiments on aligned samples of proteins. Magn Reson Chem 45(Suppl 1):S107–S115

    PubMed  CAS  Google Scholar 

  140. Marassi FM, Opella SJ (2000) A solid-state NMR index of helical membrane protein structure and topology. J Magn Reson 144:150–155

    PubMed  CAS  Google Scholar 

  141. Wang J et al (2000) Imaging membrane protein helical wheels. J Magn Reson 144:162–167

    PubMed  CAS  Google Scholar 

  142. Page RC, Kim S, Cross TA (2008) Transmembrane helix uniformity examined by spectral mapping of torsion angles. Structure 16:787–797

    PubMed  CAS  Google Scholar 

  143. Mote KR et al (2011) Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly (15)N labeled integral membrane proteins in magnetically aligned lipid bilayers. J Biomol NMR 51:339–346

    PubMed  CAS  Google Scholar 

  144. Knox RW, Lu GJ, Opella SJ, Nevzorov AA (2010) A resonance assignment method for oriented-sample solid-state NMR of proteins. J Am Chem Soc 132:8255–8257

    PubMed  CAS  Google Scholar 

  145. Lu GJ, Son WS, Opella SJ (2011) A general assignment method for oriented sample (OS) solid-state NMR of proteins based on the correlation of resonances through heteronuclear dipolar couplings in samples aligned parallel and perpendicular to the magnetic field. J Magn Reson 209:195–206

    PubMed  CAS  Google Scholar 

  146. Nevzorov AA, Opella SJ (2003) Structural fitting of PISEMA spectra of aligned proteins. J Magn Reson 160:33–39

    PubMed  CAS  Google Scholar 

  147. Asbury T et al (2006) PIPATH: an optimized algorithm for generating alpha-helical structures from PISEMA data. J Magn Reson 183:87–95

    PubMed  CAS  Google Scholar 

  148. Shi L et al (2011) Paramagnetic-based NMR restraints lift residual dipolar coupling degeneracy in multidomain detergent-solubilized membrane proteins. J Am Chem Soc 133:2232–2241

    PubMed  CAS  Google Scholar 

  149. Jones DH, Barber KR, VanDerLoo EW, Grant CW (1998) Epidermal growth factor receptor transmembrane domain: 2H NMR implications for orientation and motion in a bilayer environment. Biochemistry 37:16780–16787

    PubMed  CAS  Google Scholar 

  150. Whiles JA et al (2001) Orientation and effects of mastoparan X on phospholipid bicelles. Biophys J 80:280–293

    PubMed  CAS  Google Scholar 

  151. van der Wel PC, Strandberg E, Killian JA, Koeppe 2nd RE (2002) Geometry and intrinsic tilt of a tryptophan-anchored transmembrane alpha-helix determined by (2)H NMR. Biophys J 83:1479–1488

    PubMed  Google Scholar 

  152. Strandberg E, Wadhwani P, Tremouilhac P, Durr UH, Ulrich AS (2006) Solid-state NMR analysis of the PGLa peptide orientation in DMPC bilayers: structural fidelity of 2H-labels versus high sensitivity of 19F-NMR. Biophys J 90:1676–1686

    PubMed  CAS  Google Scholar 

  153. Resende JM et al (2009) Membrane structure and conformational changes of the antibiotic heterodimeric peptide distinctin by solid-state NMR spectroscopy. Proc Natl Acad Sci USA 106:16639–16644

    PubMed  CAS  Google Scholar 

  154. Vostrikov VV, Hall BA, Greathouse DV, Koeppe 2nd RE, Sansom MS (2010) Changes in transmembrane helix alignment by arginine residues revealed by solid-state NMR experiments and coarse-grained MD simulations. J Am Chem Soc 132:5803–5811

    PubMed  CAS  Google Scholar 

  155. Bertelsen K et al (2011) Long-term-stable ether-lipid vs conventional ester-lipid bicelles in oriented solid-state NMR: altered structural information in studies of antimicrobial peptides. J Phys Chem B 115:1767–1774

    PubMed  CAS  Google Scholar 

  156. Davis JH, Maraviglia B, Weeks G, Godin DV (1979) Bilayer rigidity of the erythrocyte membrane2H-NMR of a perdeuterated palmitic acid probe. Biochim Biophys Acta 550:362–366

    PubMed  CAS  Google Scholar 

  157. Larsen FH, Jakobsen HJ, Ellis PD, Nielsen NC (1998) QCPMG-MAS NMR of half-integer quadrupolar nuclei. J Magn Reson 131:144–147

    PubMed  CAS  Google Scholar 

  158. Killian JA, Taylor MJ, Koeppe 2nd RE (1992) Orientation of the valine-1 side chain of the gramicidin transmembrane channel and implications for channel functioning. A 2H NMR study. Biochemistry 31:11283–11290

    PubMed  CAS  Google Scholar 

  159. Thomas R, Vostrikov VV, Greathouse DV, Koeppe 2nd RE (2009) Influence of proline upon the folding and geometry of the WALP19 transmembrane peptide. Biochemistry 48:11883–11891

    PubMed  CAS  Google Scholar 

  160. Abu-Baker S et al (2007) Side chain and backbone dynamics of phospholamban in phospholipid bilayers utilizing 2H and 15N solid-state NMR spectroscopy. Biochemistry 46:11695–11706

    PubMed  CAS  Google Scholar 

  161. Vold RL, Hoatson GL (2009) Effects of jump dynamics on solid state nuclear magnetic resonance line shapes and spin relaxation times. J Magn Reson 198:57–72

    PubMed  CAS  Google Scholar 

  162. Vugmeyster L et al (2011) Slow motions in the hydrophobic core of chicken villin headpiece subdomain and their contributions to configurational entropy and heat capacity from solid-state deuteron NMR measurements. Biochemistry 50:10637–10646

    PubMed  CAS  Google Scholar 

  163. van der Wel PC, Reed ND, Greathouse DV, Koeppe 2nd RE (2007) Orientation and motion of tryptophan interfacial anchors in membrane-spanning peptides. Biochemistry 46:7514–7524

    PubMed  Google Scholar 

  164. Liu W, Crocker E, Siminovitch DJ, Smith SO (2003) Role of side-chain conformational entropy in transmembrane helix dimerization of glycophorin A. Biophys J 84:1263–1271

    PubMed  CAS  Google Scholar 

  165. Struppe J, Komives EA, Taylor SS, Vold RR (1998) 2H NMR studies of a myristoylated peptide in neutral and acidic phospholipid bicelles. Biochemistry 37:15523–15527

    PubMed  CAS  Google Scholar 

  166. Gaffarogullari EC et al (2011) A myristoyl/phosphoserine switch controls cAMP-dependent protein kinase association to membranes. J Mol Biol 411:823–836

    PubMed  CAS  Google Scholar 

  167. Koch K, Afonin S, Ieronimo M, Berditsch M, Ulrich AS (2012) Solid-state (19)F-NMR of peptides in native membranes. Top Curr Chem 306:89–118

    PubMed  CAS  Google Scholar 

  168. Luo W, Mani R, Hong M (2007) Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solid-state NMR. J Phys Chem B 111:10825–10832

    PubMed  CAS  Google Scholar 

  169. Young TS, Schultz PG (2010) Beyond the canonical 20 amino acids: expanding the genetic lexicon. J Biol Chem 285:11039–11044

    PubMed  CAS  Google Scholar 

  170. Traaseth NJ, Verardi R, Veglia G (2008) Asymmetric methyl group labeling as a probe of membrane protein homo-oligomers by NMR spectroscopy. J Am Chem Soc 130:2400–2401

    PubMed  CAS  Google Scholar 

  171. Walters KJ et al (2001) Characterizing protein-protein complexes and oligomers by nuclear magnetic resonance spectroscopy. Methods Enzymol 339:238–258

    PubMed  CAS  Google Scholar 

  172. Yang J, Tasayco ML, Polenova T (2008) Magic angle spinning NMR experiments for structural studies of differentially enriched protein interfaces and protein assemblies. J Am Chem Soc 130:5798–5807

    PubMed  CAS  Google Scholar 

  173. Kosen PA (1989) Spin labeling of proteins. Methods Enzymol 177:86–121

    PubMed  CAS  Google Scholar 

  174. Nelson DJ (1978) Fluorine-19 magnetic resonance of muscle calcium binding parvalbumin: PH dependency of resonance position and spin–lattice relaxation time. Inorg Chim Acta 27:L71–L74

    CAS  Google Scholar 

  175. Klein-Seetharaman J, Getmanova EV, Loewen MC, Reeves PJ, Khorana HG (1999) NMR spectroscopy in studies of light-induced structural changes in mammalian rhodopsin: applicability of solution (19)F NMR. Proc Natl Acad Sci USA 96:13744–13749

    PubMed  CAS  Google Scholar 

  176. Adriaensens P et al (1988) Investigation of protein structure by means of 19F-NMR. A study of hen egg-white lysozyme. Eur J Biochem 177:383–394

    PubMed  CAS  Google Scholar 

  177. Mehta VD, Kulkarni PV, Mason RP, Constantinescu A, Antich PP (1994) Fluorinated proteins as potential 19F magnetic resonance imaging and spectroscopy agents. Bioconjug Chem 5:257–261

    PubMed  CAS  Google Scholar 

  178. Donald LJ, Crane BR, Anderson DH, Duckworth HW (1991) The role of cysteine 206 in allosteric inhibition of Escherichia coli citrate synthase. studies by chemical modification, site-directed mutagenesis, and 19F NMR. J Biol Chem 266:20709–20713

    PubMed  CAS  Google Scholar 

  179. Phillips L, Separovic F, Cornell BA, Barden JA, dos Remedios CG (1991) Actin dynamics studied by solid-state NMR spectroscopy. Eur Biophys J 19:147–155

    PubMed  CAS  Google Scholar 

  180. Brauer M, Sykes BD (1986) 19F nuclear magnetic resonance studies of selectively fluorinated derivatives of G- and F-actin. Biochemistry 25:2187–2191

    PubMed  CAS  Google Scholar 

  181. Kay LE, Pascone JM, Sykes BD, Shriver JW (1987) 19F nuclear magnetic resonance as a probe of structural transitions and cooperative interactions in heavy meromyosin. J Biol Chem 262:1984–1988

    PubMed  CAS  Google Scholar 

  182. Evanics F, Kitevski JL, Bezsonova I, Forman-Kay J, Prosser RS (2007) 19F NMR studies of solvent exposure and peptide binding to an SH3 domain. Biochim Biophys Acta 1770:221–230

    PubMed  CAS  Google Scholar 

  183. Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335:1106–1110

    PubMed  CAS  Google Scholar 

  184. Religa TL, Ruschak AM, Rosenzweig R, Kay LE (2011) Site-directed methyl group labeling as an NMR probe of structure and dynamics in supramolecular protein systems: applications to the proteasome and to the ClpP protease. J Am Chem Soc 133:9063–9068

    PubMed  CAS  Google Scholar 

  185. Richards PG, Coles B, Heptinstall J, Walton DJ (1994) Electrochemical modification of lysozyme: anodic reaction of tyrosine residues. Enzyme Microb Technol 16:795–801

    PubMed  CAS  Google Scholar 

  186. Hebel D, Kirk KL, Cohen LA, Labroo VM (1990) First direct fluorination of tyrosine-containing biologically active peptides. Tetrahedron Lett 31:619–622

    CAS  Google Scholar 

  187. Abraham SJ, Hoheisel S, Gaponenko V (2008) Detection of protein-ligand interactions by NMR using reductive methylation of lysine residues. J Biomol NMR 42:143–148

    PubMed  CAS  Google Scholar 

  188. Ivan R (1997) Macromolecular crystallography part A. In: Charles W, Carter J (eds) Methods in enzymology. Academic Press, New York, pp 171–179

    Google Scholar 

  189. Bokoch MP et al (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463:108–112

    PubMed  CAS  Google Scholar 

  190. Su XC, Otting G (2010) Paramagnetic labelling of proteins and oligonucleotides for NMR. J Biomol NMR 46:101–112

    PubMed  CAS  Google Scholar 

  191. Berardi MJ, Shih WM, Harrison SC, Chou JJ (2011) Mitochondrial uncoupling protein 2 structure determined by NMR molecular fragment searching. Nature 476:109–113

    PubMed  CAS  Google Scholar 

  192. Trad CH, James W, Bhardwaj A, Butterfield DA (1995) Selective labeling of membrane protein sulfhydryl groups with methanethiosulfonate spin label. J Biochem Biophys Methods 30:287–299

    PubMed  CAS  Google Scholar 

  193. Hubbell WL, Gross A, Langen R, Lietzow MA (1998) Recent advances in site-directed spin labeling of proteins. Curr Opin Struct Biol 8:649–656

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluigi Veglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Verardi, R., Traaseth, N.J., Masterson, L.R., Vostrikov, V.V., Veglia, G. (2012). Isotope Labeling for Solution and Solid-State NMR Spectroscopy of Membrane Proteins. In: Atreya, H. (eds) Isotope labeling in Biomolecular NMR. Advances in Experimental Medicine and Biology, vol 992. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4954-2_3

Download citation

Publish with us

Policies and ethics