Segmental Labeling to Study Multidomain Proteins

  • Jing Xue
  • David S. Burz
  • Alexander ShekhtmanEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 992)


This chapter contains a review of methodologies and recent applications of segmental labeling for NMR structural studies of proteins and protein complexes. Segmental labeling is used to specifically label a segment of protein structure with NMR active nuclei, thus reducing NMR spectral complexity and greatly facilitating structural NMR studies of large multi-domain proteins. It can also be used to introduce a synthetic fragment into a protein structure to study post-translationally modified proteins. Detailed protocols describing segmental labeling techniques are also included.


Solid Phase Peptide Synthesis Chitin Binding Domain Splice Reaction Native Chemical Ligation Ligation Efficiency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Heath WF, Merrifield RB (1986) A synthetic approach to structure-function relationships in the murine epidermal growth factor molecule. Proc Natl Acad Sci USA 83:6367–6371PubMedCrossRefGoogle Scholar
  2. 2.
    Dawson PE, Muir TW, Clark-Lewis I, Kent SB (1994) Synthesis of proteins by native chemical ligation. Science 266:776–779PubMedCrossRefGoogle Scholar
  3. 3.
    Tam JP, Lu YA, Liu CF, Shao J (1995) Peptide synthesis using unprotected peptides through orthogonal coupling methods. Proc Natl Acad Sci USA 92:12485–12489PubMedCrossRefGoogle Scholar
  4. 4.
    Dawson PE, Kent SB (2000) Synthesis of native proteins by chemical ligation. Annu Rev Biochem 69:923–960PubMedCrossRefGoogle Scholar
  5. 5.
    Kent SB (1988) Chemical synthesis of peptides and proteins. Annu Rev Biochem 57:957–989PubMedCrossRefGoogle Scholar
  6. 6.
    Schnolzer M, Alewood P, Jones A, Alewood D, Kent SB (1992) In situ neutralization in Boc-chemistry solid phase peptide synthesis. Rapid, high yield assembly of difficult sequences. Int J Pept Protein Res 40:180–193PubMedCrossRefGoogle Scholar
  7. 7.
    Camarero JA, Hackel BJ, de Yoreo JJ, Mitchell AR (2004) Fmoc-based synthesis of peptide alpha-thioesters using an aryl hydrazine support. J Org Chem 69:4145–4151PubMedCrossRefGoogle Scholar
  8. 8.
    Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222:311–333PubMedCrossRefGoogle Scholar
  9. 9.
    Hackeng TM, Mounier CM, Bon C, Dawson PE, Griffin JH, Kent SB (1997) Total chemical synthesis of enzymatically active human type II secretory phospholipase A2. Proc Natl Acad Sci USA 94:7845–7850PubMedCrossRefGoogle Scholar
  10. 10.
    Hackeng TM, Griffin JH, Dawson PE (1999) Protein synthesis by native chemical ligation: expanded scope by using straightforward methodology. Proc Natl Acad Sci USA 96:10068–10073PubMedCrossRefGoogle Scholar
  11. 11.
    Severinov K, Muir TW (1998) Expressed protein ligation, a novel method for studying protein-protein interactions in transcription. J Biol Chem 273:16205–16209PubMedCrossRefGoogle Scholar
  12. 12.
    Romanelli A, Shekhtman A, Cowburn D, Muir TW (2004) Semisynthesis of a segmental isotopically labeled protein splicing precursor: NMR evidence for an unusual peptide bond at the N-extein-intein junction. Proc Natl Acad Sci USA 101:6397–6402PubMedCrossRefGoogle Scholar
  13. 13.
    Muir TW, Sondhi D, Cole PA (1998) Expressed protein ligation: a general method for protein engineering. Proc Natl Acad Sci USA 95:6705–6710PubMedCrossRefGoogle Scholar
  14. 14.
    Tolbert TJ, Franke D, Wong CH (2005) A new strategy for glycoprotein synthesis: ligation of synthetic glycopeptides with truncated proteins expressed in E. coli as TEV protease cleavable fusion protein. Bioorg Med Chem 13:909–915PubMedCrossRefGoogle Scholar
  15. 15.
    Chong S, Xu MQ (1997) Protein splicing of the Saccharomyces cerevisiae VMA intein without the endonuclease motifs. J Biol Chem 272:15587–15590PubMedCrossRefGoogle Scholar
  16. 16.
    Derbyshire V, Belfort M (1998) Lightning strikes twice: intron-intein coincidence. Proc Natl Acad Sci USA 95:1356–1357PubMedCrossRefGoogle Scholar
  17. 17.
    Shingledecker K, Jiang SQ, Paulus H (1998) Molecular dissection of the Mycobacterium tuberculosis RecA intein: design of a minimal intein and of a trans-splicing system involving two intein fragments. Gene 207:187–195PubMedCrossRefGoogle Scholar
  18. 18.
    Wu H, Xu MQ, Liu XQ (1998) Protein trans-splicing and functional mini-inteins of a cyanobacterial dnaB intein. Biochim Biophys Acta 1387:422–432PubMedCrossRefGoogle Scholar
  19. 19.
    Telenti A, Southworth M, Alcaide F, Daugelat S, Jacobs WR Jr, Perler FB (1997) The Mycobacterium xenopi GyrA protein splicing element: characterization of a minimal intein. J Bacteriol 179:6378–6382PubMedGoogle Scholar
  20. 20.
    Smith DR, Doucette-Stamm LA, Deloughery C, Lee H, Dubois J, Aldredge T, Bashirzadeh R, Blakely D, Cook R, Gilbert K, Harrison D, Hoang L, Keagle P, Lumm W, Pothier B, Qiu D, Spadafora R, Vicaire R, Wang Y, Wierzbowski J, Gibson R, Jiwani N, Caruso A, Bush D, Reeve JN et al (1997) Complete genome sequence of Methanobacterium thermoautotrophicum deltaH: functional analysis and comparative genomics. J Bacteriol 179:7135–7155PubMedGoogle Scholar
  21. 21.
    Mathys S, Evans TC, Chute IC, Wu H, Chong S, Benner J, Liu XQ, Xu MQ (1999) Characterization of a self-splicing mini-intein and its conversion into autocatalytic N- and C-terminal cleavage elements: facile production of protein building blocks for protein ligation. Gene 231:1–13PubMedCrossRefGoogle Scholar
  22. 22.
    Evans TC Jr, Benner J, Xu MQ (1999) The in vitro ligation of bacterially expressed proteins using an intein from Methanobacterium thermoautotrophicum. J Biol Chem 274:3923–3926PubMedCrossRefGoogle Scholar
  23. 23.
    Hauser PS, Ryan RO (2007) Expressed protein ligation using an N-terminal cysteine containing fragment generated in vivo from a pelB fusion protein. Protein Expr Purif 54:227–233PubMedCrossRefGoogle Scholar
  24. 24.
    Xu R, Ayers B, Cowburn D, Muir TW (1999) Chemical ligation of folded recombinant proteins: segmental isotopic labeling of domains for NMR studies. Proc Natl Acad Sci USA 96:388–393PubMedCrossRefGoogle Scholar
  25. 25.
    Hawley DK, McClure WR (1983) Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255PubMedCrossRefGoogle Scholar
  26. 26.
    Harley CB, Reynolds RP (1987) Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361PubMedCrossRefGoogle Scholar
  27. 27.
    Dombroski AJ, Walter WA, Record MT Jr, Siegele DA, Gross CA (1992) Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70:501–512PubMedCrossRefGoogle Scholar
  28. 28.
    Dombroski AJ, Walter WA, Gross CA (1993) Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev 7:2446–2455PubMedCrossRefGoogle Scholar
  29. 29.
    Patikoglou GA, Westblade LF, Campbell EA, Lamour V, Lane WJ, Darst SA (2007) Crystal structure of the Escherichia coli regulator of sigma70, Rsd, in complex with sigma70 domain 4. J Mol Biol 372:649–659PubMedCrossRefGoogle Scholar
  30. 30.
    Gruber TM, Bryant DA (1997) Molecular systematic studies of eubacteria, using sigma70-type sigma factors of group 1 and group 2. J Bacteriol 179:1734–1747PubMedGoogle Scholar
  31. 31.
    Camarero JA, Muir TW (2001) Native chemical ligation of polypeptides. Curr Protoc Protein Sci Chapter 18:Unit18.14Google Scholar
  32. 32.
    Camarero JA, Shekhtman A, Campbell EA, Chlenov M, Gruber TM, Bryant DA, Darst SA, Cowburn D, Muir TW (2002) Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc Natl Acad Sci USA 99:8536–8541PubMedCrossRefGoogle Scholar
  33. 33.
    Vuthoori S, Bowers CW, McCracken A, Dombroski AJ, Hinton DM (2001) Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. J Mol Biol 309:561–572PubMedCrossRefGoogle Scholar
  34. 34.
    Sorenson MK, Darst SA (2006) Disulfide cross-linking indicates that FlgM-bound and free sigma28 adopt similar conformations. Proc Natl Acad Sci USA 103:16722–16727PubMedCrossRefGoogle Scholar
  35. 35.
    Skrisovska L, Allain FH (2008) Improved segmental isotope labeling methods for the NMR study of multidomain or large proteins: application to the RRMs of Npl3p and hnRNP L. J Mol Biol 375:151–164PubMedCrossRefGoogle Scholar
  36. 36.
    Hui J, Bindereif A (2005) Alternative pre-mRNA splicing in the human system: unexpected role of repetitive sequences as regulatory elements. Biol Chem 386:1265–1271PubMedCrossRefGoogle Scholar
  37. 37.
    Slynko V, Schubert M, Numao S, Kowarik M, Aebi M, Allain FH (2009) NMR structure determination of a segmentally labeled glycoprotein using in vitro glycosylation. J Am Chem Soc 131:1274–1281PubMedCrossRefGoogle Scholar
  38. 38.
    Kowarik M, Numao S, Feldman MF, Schulz BL, Callewaert N, Kiermaier E, Catrein I, Aebi M (2006) N-linked glycosylation of folded proteins by the bacterial oligosaccharyltransferase. Science 314:1148–1150PubMedCrossRefGoogle Scholar
  39. 39.
    Schubert M, Oschkinat H, Schmieder P (2001) MUSIC, selective pulses, and tuned delays: amino acid type-selective (1)H-(15)N correlations, II. J Magn Reson 148:61–72PubMedCrossRefGoogle Scholar
  40. 40.
    Wood MJ, Sampoli Benitez BA, Komives EA (2000) Solution structure of the smallest cofactor-active fragment of thrombomodulin. Nat Struct Biol 7:200–204PubMedCrossRefGoogle Scholar
  41. 41.
    Skrisovska L, Schubert M, Allain FH (2010) Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. J Biomol NMR 46:51–65PubMedCrossRefGoogle Scholar
  42. 42.
    Southworth MW, Amaya K, Evans TC, Xu MQ, Perler FB (1999) Purification of proteins fused to either the amino or carboxy terminus of the Mycobacterium xenopi gyrase A intein. Biotechniques 27:110–114, 116, 118–120PubMedGoogle Scholar
  43. 43.
    Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13:289–302PubMedCrossRefGoogle Scholar
  44. 44.
    Ritt S, Boschitz ET, Meier R, Tacik R, Wessler M, Junker K, Konter JA, Mango S, Renker D, van den Brandt B, Efimovyhk VV, Kovaljov A, Prokofiev A, Mach R, Chaumette P, Deregel J, Durand G, Fabre J, Thiel W (1991) Measurement of the vector analyzing power iT11 in pi +−6Li. Phys Rev C Nucl Phys 43:745–760PubMedCrossRefGoogle Scholar
  45. 45.
    Juranic N, Moncrieffe MC, Likic VA, Prendergast FG, Macura S (2002) Structural dependencies of h3JNC′ scalar coupling in protein H-bond chains. J Am Chem Soc 124:14221–14226PubMedCrossRefGoogle Scholar
  46. 46.
    Juranic N, Vuk-Pavlovic S, Nikolic AT, Chen TB, Macura S (1996) Nitrogen-15 NMR chemical shifts in oligopeptides coordinated to cobalt(III). J Inorg Biochem 62:117–126PubMedCrossRefGoogle Scholar
  47. 47.
    Juranic N, Macura S (2001) Correlations among (1)J(NC)′ and (h3)J(NC)′ coupling constants in the hydrogen-bonding network of human ubiquitin. J Am Chem Soc 123:4099–4100PubMedCrossRefGoogle Scholar
  48. 48.
    Frutos S, Goger M, Giovani B, Cowburn D, Muir TW (2010) Branched intermediate formation stimulates peptide bond cleavage in protein splicing. Nat Chem Biol 6:527–533PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of ChemistryState University of New York at AlbanyAlbanyUSA

Personalised recommendations