Skip to main content

Mammalian Expression of Isotopically Labeled Proteins for NMR Spectroscopy

  • Chapter
  • First Online:
Isotope labeling in Biomolecular NMR

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 992))

Abstract

NMR spectroscopic characterization of biologically interesting proteins generally requires the incorporation of 15N/13C and/or 2H stable isotopes. While prokaryotic incorporation systems are regularly used, mammalian ones are not: of the nearly 9,000 NMR macromolecular structures currently deposited in the Protein Data Bank, only a handful (<0.5%) were solved with proteins expressed in mammalian systems. This low number of structures is largely a reflection of the difficulty in producing uniformly labeled, mammalian-expressed proteins. This is unfortunate, as many interesting proteins require mammalian cofactors, chaperons, or post-translational modifications such as N-linked glycosylation, and mammalian cells have the necessary machinery to produce them correctly. Here we describe recent advances in mammalian expression, including an efficient adenoviral vector-based system, for the production of isotopically enriched proteins. This system allows for the expression of mammalian proteins and their complexes, including proteins that require post-translational modifications. We describe how this system can produce isotopically labeled 15N and 13C post-translationally modified proteins, such as the outer domain of HIV-1 gp120, which has 15 sites of N-linked glycosylation. Selective amino-acid labeling is also described. These developments should reduce barriers to the determination of NMR structures with isotopically labeled proteins from mammalian expression systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CHO:

Chinese Hamster Ovary cells

HEK:

Human Embryonic Kidney cells

BHK21:

Baby Hamster Kidney cells

HIV-1:

Human Immunodeficiency Virus Type 1

RSV:

Rous Sarcoma Virus

CMV:

Cytomegalovirus

PEI:

Polyethyleneimine

ITR:

Inverted terminal repeat

BGHpA:

Bovine growth hormone polyadenylation signal

SPR:

Surface plasmon resonance

PBS:

Phosphate buffered saline

ATCC:

American Type Culture Collection

DMEM:

Dubelco’s modified eagle media

FBS:

Dialyzed fetal bovine serum

CAR:

Coxsackie-and Adenovirus Receptor.

References

  1. Sastry M, Xu L, Georgiev IS, Bewley CA, Nabel GJ, Kwong PD (2011) Mammalian production of an isotopically enriched outer domain of the HIV-1 gp120 glycoprotein for NMR spectroscopy. J Biomol NMR 50:197–207

    Article  PubMed  CAS  Google Scholar 

  2. Nettleship JE, Assenberg R, Diprose JM, Rahman-Huq N, Owens RJ (2010) Recent advances in the production of proteins in insect and mammalian cells for structural biology. J Struct Biol 172:55–65

    Article  PubMed  CAS  Google Scholar 

  3. Kriz A, Schmid K, Baumgartner N, Ziegler U, Berger I, Ballmer-Hofer K, Berger P (2010) A plasmid-based multigene expression system for mammalian cells. Nat Commun 1:120

    Article  PubMed  Google Scholar 

  4. Trowitzsch S, Klumpp M, Thoma R, Carralot J-P, Berger I (2011) Light it up: highly efficient multigene delivery in mammalian cells. Bioessays 33:946–955

    Article  PubMed  CAS  Google Scholar 

  5. Kingston RE, Chen CA, Okayama H (2001) Calcium phosphate transfection. In: Current protocols in immunology, vol 31. Wiley, New York, pp 10.13.1–10.13.9

    Google Scholar 

  6. Potter H, Heller R (2010) Transfection by electroporation. In: Current protocols in molecular biology, vol 92. Wiley, New York, pp 9.3.1–9.3.10

    Google Scholar 

  7. Xia W, Bringmann P, McClary J, Jones PP, Manzana W, Zhu Y, Wang S, Liu Y, Harvey S, Madlansacay MR, McLean K, Rosser MP, MacRobbie J, Olsen CL, Cobb RR (2006) High levels of protein expression using different mammalian CMV promoters in several cell lines. Protein Expr Purif 45:115–124

    Article  PubMed  CAS  Google Scholar 

  8. Coleman TA, Parmelee D, Thotakura NR, Nguyen N, Bürgin M, Gentz S, Gentz R (1997) Production and purification of novel secreted human proteins. Gene 190:163–171

    Article  PubMed  CAS  Google Scholar 

  9. Backliwal G, Hildinger M, Chenuet S, Wulhfard S, De Jesus M, Wurm FM (2008) Rational vector design and multi-pathway modulation of HEK 293E cells yield recombinant antibody titers exceeding 1 g/l by transient transfection under serum-free conditions. Nucleic Acids Res 36:e96

    Article  PubMed  Google Scholar 

  10. Hopkins RF, Wall VE, Esposito D (2012) Optimizing transient recombinant protein expression in mammalian cells. In: Hartley JL (ed) Protein expression in mammalian cells: methods and protocols, vol 801, Methods in molecular biology. Humana Press, New York, pp 251–268

    Google Scholar 

  11. Geisse S, Fux C (2009) Recombinant protein production by transient gene transfer into mammalian cells. In: Burgess RR, Deutscher MP (eds) Methods in Enzymology, vol 463. Academic Press, San Diego, pp 223–238

    Google Scholar 

  12. Zhou T, Xu L, Dey B, Hessell AJ, Van Ryk D, Xiang S-H, Yang X, Zhang M-Y, Zwick MB, Arthos J, Burton DR, Dimitrov DS, Sodroski J, Wyatt R, Nabel GJ, Kwong PD (2007) Structural definition of a conserved neutralization epitope on HIV-1 gp120. Nature 445:732–737

    Article  PubMed  CAS  Google Scholar 

  13. Chen L, Kwon YD, Zhou T, Wu X, O’Dell S, Cavacini L, Hessell AJ, Pancera M, Tang M, Xu L, Yang Z-Y, Zhang M-Y, Arthos J, Burton DR, Dimitrov DS, Nabel GJ, Posner MR, Sodroski J, Wyatt R, Mascola JR, Kwong PD (2009) Structural basis of immune evasion at the site of CD4 attachment on HIV-1 gp120. Science 326:1123–1127

    Article  PubMed  CAS  Google Scholar 

  14. Kwong PD, Nabel GJ, Acharya P, Boyington JC, Chen L, Hood C, Kim A, Kong L, Kwon YD, Majeed S, McLellan J, Ofek G, Pancera M, Sastry M, Shah AC, Stuckey J, Zhou T (2011) Structural biology and the design of effective vaccines for HIV-1 and other viruses. In: Georgiev S (ed) National Institute of Allergy and Infectious Disease, NIH. Humana, New York, pp 387–402

    Google Scholar 

  15. Southern P, Berg P (1982) Transformation of mammalian cell to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J Mol Appl Genet 1:327–341

    PubMed  CAS  Google Scholar 

  16. Chen C, Okayama H (1987) High-efficiency transformation of mammalian cells by plasmid DNA. Mol Cell Biol 7:2745–2752

    PubMed  CAS  Google Scholar 

  17. Hansen AP, Petros AM, Mazar AP, Pederson TM, Rueter A, Fesik SW (1992) A practical method for uniform isotopic labeling of recombinant proteins in mammalian cells. Biochemistry 31:12713–12718

    Article  PubMed  CAS  Google Scholar 

  18. Wyss DF, Dayie KT, Wagner G (1997) The counterreceptor binding site of human CD2 exhibits an extended surface patch with multiple conformations fluctuating with millisecond to microsecond motions. Protein Sci 6:534–542

    Article  PubMed  CAS  Google Scholar 

  19. Wyss DF, Withka JM, Knoppers MH, Sterne KA, Recny MA, Wagner G (1993) Proton resonance assignments and secondary structure of the 13.6 kDa glycosylated adhesion domain of human CD2. Biochemistry 32:10995–11006

    Article  PubMed  CAS  Google Scholar 

  20. Lustbader JW, Birken S, Pollak S, Pound A, Chait BT, Mirza UA, Ramnarain S, Canfield RE, Brown JM (1996) Expression of human chorionic gonadotropin uniformly labeled with NMR isotpes in Chinese hamster ovary cells: an advance toward rapid determination of glycoprotein structures. J Biomol NMR 7:295–304

    Article  PubMed  CAS  Google Scholar 

  21. Shindo K, Masuda K, Takahashi H, Arata Y, Shimada I (2000) Backbone 1H, 13C, and 15N resonance assignments of the anti-dansyl antibody Fv fragment. J Biomol NMR 17:357–358

    Article  PubMed  CAS  Google Scholar 

  22. Hansen AP, Petros AM, Meadows RP, Nettesheim DG, Mazar AP, Olejniczak ET, Xu RX, Pederson TM, Henkin J, Fesik SW (1994) Solution structure of the amino-terminal fragment of urokinase-type plasminogen activator. Biochemistry 33:4847–4864

    Article  PubMed  CAS  Google Scholar 

  23. Hinck AP, Archer SJ, Qian SW, Roberts AB, Sporn MB, Weatherbee JA, Tsang MLS, Lucas R, Zhang B-L, Wenker J, Torchia DA (1996) Transforming growth factor β1: three-dimensional structure in solution and comparison with the X-ray structure of transforming growth factor β2. Biochemistry 35:8517–8534

    Article  PubMed  CAS  Google Scholar 

  24. Wyss D, Choi J, Li J, Knoppers M, Willis K, Arulanandam A, Smolyar A, Reinherz E, Wagner G (1995) Conformation and function of the N-linked glycan in the adhesion domain of human CD2. Science 269:1273–1278

    Article  PubMed  CAS  Google Scholar 

  25. Metzler WJ, Bajorath J, Fenderson W, Shaw SY, Peach R, Constantine KL, Naemura J, Leyte G, Lavoie TB, Mueller L, Linsley PS (1997) Solution structure of human CTLA 4 and delineation of a CD80/CD86 binding site conserved in CD28. Nat Struc Biol 4:527–531

    Google Scholar 

  26. Werner K, Richter C, Klein-Seetharaman J, Schwalbe H (2008) Isotope labeling of mammalian GPCRs in HEK293 cells and characterization of the C-terminus of bovine rhodopsin by high resolution liquid NMR spectroscopy. J Biomol NMR 40:49–53

    Article  PubMed  CAS  Google Scholar 

  27. Arata Y, Kato K, Takahashi H, Shimada I (1994) Nuclear magnetic resonance study of antibodies: a multinuclear approach. Method Enzymol 239:440–464

    Article  CAS  Google Scholar 

  28. Klein-Seetharaman J, Yanamala NVK, Javeed F, Reeves PJ, Getmanova EV, Loewen MC, Schwalbe H, Khorana HG (2004) Differential dynamics in the G protein-coupled receptor rhodopsin revealed by solution NMR. Proc Natl Acad Sci USA 101:3409–3413

    Article  PubMed  CAS  Google Scholar 

  29. Klein-Seetharaman J, Reeves PJ, Loewen MC, Getmanova EV, Chung J, Schwalbe H, Wright PE, Khorana HG (2002) Solution NMR spectroscopy of [α-15N]lysine-labeled rhodopsin: the single peak observed in both conventional and TROSY-type HSQC spectra is ascribed to Lys-339 in the carboxyl-terminal peptide sequence. Proc Natl Acad Sci USA 99:3452–3457

    Article  PubMed  CAS  Google Scholar 

  30. Mulligan RC, Howard BH, Berg P (1979) Synthesis of rabbit [β]-globin in cultured monkey kidney cells following infection with a SV40 [β]-globin recombinant genome. Nature 277:108–114

    Article  PubMed  CAS  Google Scholar 

  31. Warnock JN, Daigre C, Al-Rubeai M (2011) Introduction to viral vectors. In: Merten O, Al-Rubeai M (eds) Viral vectors for gene therapy: methods and protocols, vol 737, Methods in molecular biology. Humana Press, New York, pp 1–25

    Google Scholar 

  32. Gluzman Y, Reichl H, Scolnick D (1982) Helper-free adenovirus type-5 vectors. In: Gluzman Y (ed) Eukaryotic viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 187–192

    Google Scholar 

  33. Howley PM, Sarver N, Law M-F (1983) Eukaryotic cloning vectors derived from bovine papillomavirus DNA. In: Wu R, Grossman L, Moldave K (eds) Methods in Enzymology, vol 101. Academic Press, pp 387–402

    Google Scholar 

  34. Waehler R, Russell SJ, Curiel DT (2007) Engineering targeted viral vectors for gene therapy. Nat Rev Genet 8:573–587

    Article  PubMed  CAS  Google Scholar 

  35. Berk AJ (1986) Adenovirus promoters and E1A transactivation. Annu Rev Genet 20:45–79

    Article  PubMed  CAS  Google Scholar 

  36. Shenk T (1996) Adenoviridae: the viruses and their replication. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2111–2148

    Google Scholar 

  37. Berkner K, Sharp P (1982) Preperation of adenovirus recombinant using plasmids of viral DNA. In: Gluzman Y (ed) Eukaryotic viral vectors. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp 193–198

    Google Scholar 

  38. Babich A, Feldman LT, Nevins JR, Darnell JE Jr, Weinberger C (1983) Effect of adenovirus on metabolism of specific host mRNAs: transport control and specific translational discrimination. Mol Cell Biol 3:1212–1221

    PubMed  CAS  Google Scholar 

  39. Huang JT, Schneider RJ (1990) Adenovirus inhibition of cellular protein synthesis is prevented by the drug 2-aminopurine. Proc Natl Acad Sci USA 87:7115–7119

    Article  PubMed  CAS  Google Scholar 

  40. Aoki K, Barker C, Danthinne X, Imperiale MJ, Nabel GJ (1999) Efficient generation of recombinant adenoviral vectors by Cre-lox recombination in vitro. Mol Med 5:224–231

    PubMed  CAS  Google Scholar 

  41. Moore D, Dowhan D (2002) Purification and concentration of DNA from aqueous solutions. In: Current protocol in molecular biology, vol 59. Wiley, New York, pp 2.1.1–2.1.10

    Google Scholar 

  42. Voytas D (2001) Agarose gel electrophoresis. In: Current protocol in molecular biology, vol 51. Wiley, New York, pp 2.5A.1–2.5A.9

    Google Scholar 

  43. Hall K, Blair Zajdel ME, Blair GE (2009) Defining the role of CD46, CD80 and CD86 in mediating adenovirus type 3 fiber interactions with host cells. Virology 392:222–229

    Article  PubMed  CAS  Google Scholar 

  44. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–72

    Article  PubMed  CAS  Google Scholar 

  45. Rich RL, Myszka DG (2010) Grading the commercial optical biosensor literature—Class of 2008: ‘The Mighty Binders’. J Mol Recognit 23:1–64

    Article  PubMed  CAS  Google Scholar 

  46. Raghavan M, Bjorkman PJ (1995) BIAcore: a microchip-based system for analyzing the formation of macromolecular complexes. Structure 3:331–333

    Article  PubMed  CAS  Google Scholar 

  47. Duffy AM, O’Doherty AM, O’Brien T, Strappe PM (2005) Purification of adenovirus and adeno-associated virus: comparison of novel membrane-based technology to conventional techniques. Gene Ther 12:S62–S72

    Article  PubMed  CAS  Google Scholar 

  48. Tan R, Li C, Jiang S, Ma L (2006) A novel and simple method for construction of recombinant adenoviruses. Nucleic Acids Res 34:e89

    Article  PubMed  Google Scholar 

  49. Chillon M, Alemany R (2011) Methods to construct recombinant adenovirus vectors. In: Merten O, Al-Rubeai M (eds) Viral vectors for gene therapy: methods and protocols, vol 737, Methods in molecular biology. Humana Press, New York, pp 117–138

    Google Scholar 

  50. Horwitz MS (1996) Adenoviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology. Lippincott-Raven, Philadelphia, pp 2149–2171

    Google Scholar 

  51. Fisher TN, Ginsberg HS (1957) Accumulation of organic acids by HeLa cells infected with type 4 adenovirus. Proc Soc Exp Biol Med 95:47–51

    PubMed  CAS  Google Scholar 

  52. LeMaster DM (1990) Deuterium labelling in NMR structural analysis of larger proteins. Q Rev Biophys 23:133–174

    Article  PubMed  CAS  Google Scholar 

  53. Murphy J, Desaive C, Giaretti W, Kendall F, Nicolini C (1977) Experimental results on mammalian cells growing in vitro in deuterated medium for neutron-scattering studies. J Cell Sci 25:87–94

    PubMed  CAS  Google Scholar 

  54. Elbein AD, Tropea JE, Mitchell M, Kaushal GP (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

    PubMed  CAS  Google Scholar 

  55. Elbein AD (1991) Glycosidase inhibitors: inhibitors of N-linked oligosaccharide processing. FASEB J 5:3055–3063

    PubMed  CAS  Google Scholar 

  56. Kong L, Sheppard NC, Stewart-Jones GBE, Robson CL, Chen H, Xu X, Krashias G, Bonomelli C, Scanlan CN, Kwong PD, Jeffs SA, Jones IM, Sattentau QJ (2010) Expression-system-dependent modulation of HIV-1 envelope glycoprotein antigenicity and immunogenicity. J Mol Biol 403:131–147

    Article  PubMed  CAS  Google Scholar 

  57. Magnelli P, Bielik A, Guthrie E (2012) Identification and characterization of protein glycosylation using specific endo- and exoglycosidases. In: Hartley JL (ed) Protein expression in mammalian cells: methods and protocols, vol 801, Methods in molecular biology. Humana Press, New York, pp 189–211

    Google Scholar 

  58. van Reis R, Brake JM, Charkoudian J, Burns DB, Zydney AL (1999) High-performance tangential flow filtration using charged membranes. J Membr Sci 159:133–142

    Article  Google Scholar 

  59. Anglister J, Frey T, McConnell HM (1984) Magnetic resonance of a monoclonal anti-spin-label antibody. Biochemistry 23:1138–1142

    Article  CAS  Google Scholar 

  60. Gossert A, Hinniger A, Gutmann S, Jahnke W, Strauss A, Fernández C (2011) A simple protocol for amino acid type selective isotope labeling in insect cells with improved yields and high reproducibility. J Biomol NMR 51:449–456

    Article  PubMed  CAS  Google Scholar 

  61. Truhlar SME, Cervantes CF, Torpey JW, Kjaergaard M, Komives EA (2008) Rapid mass spectrometric analysis of 15N-Leu incorporation fidelity during preparation of specifically labeled NMR samples. Protein Sci 17:1636–1639

    Article  PubMed  CAS  Google Scholar 

  62. Nabel GJ (1999) Development of optimized vectors for gene therapy. Proc Natl Acad Sci USA 96:324–326

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the NMR staff at the New York Structural Biology Consortium for assistance with instrumentation and data acquisition. We also thank the members of the Structural Biology Section and Structural Bioinformatics Section at the Vaccine Research Center for insightful comments and discussions. Support for this work was provided by the Intramural Program of the NIH (NIAID and NIDDK). 900 MHz spectrometers were purchased with funds from NIH, USA, the Keck Foundation, New York State, and the NYC Economic Development Corporation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallika Sastry .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 2 A list of reagents used in the adenoviral based mammalian expression system

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sastry, M., Bewley, C.A., Kwong, P.D. (2012). Mammalian Expression of Isotopically Labeled Proteins for NMR Spectroscopy. In: Atreya, H. (eds) Isotope labeling in Biomolecular NMR. Advances in Experimental Medicine and Biology, vol 992. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4954-2_11

Download citation

Publish with us

Policies and ethics