Skip to main content

Modeling Silicon Nanostructure Surface Functionalization for Biological Detections

  • Chapter
Book cover Quantum Simulations of Materials and Biological Systems
  • 1152 Accesses

Abstract

As materials scale down to the nano realm with the miniaturization of electronic devices, the surface to volume ratio increases. Consequently, the surface plays the crucial role in nanomaterials. Silicon being the second most abundant element on earth has been exploited in a diverse array of applications, besides the semiconductor industry. For instance, 0-dimensional silicon nanostructures or silicon quantum dots are direct band gap nanomaterials exhibiting photoluminescence (PL) properties due to their tetrahedral crystalline structure. Its PL characteristic is utilizable in bio-sensory applications such as detection of cancer cells and several biological molecules of medical importance. The structures of the silicon quantum dots can be terminated by several possible passivants, such as chemical, bio-chemical or biological molecules, for the retention of its tetrahedral symmetry. In order to realize the practical applications of the silicon quantum dots, its PL characteristic needs to be efficiently held in different media encountered in its practical applications. The recent advances in the understanding of structure-property relationship of various chemically and biologically functionalized silicon quantum dots based on our computational investigations at the quantum-mechanical level and their profound implications for bio-sensory applications are reviewed in this article. Surface functionalization is an essential step in the actualization of the silicon quantum dots (SiQDs) as biological nanoprobes and sensors. Capping SiQDs with the alkyl group induces minimal changes in the optical spectra with respect to its hydrogen passivated counterpart, while covering the surface with NH2, SH, and OH results in discernible changes in its PL properties. Varying the S coverage on the surface can further tune the optical properties of SiQDs. SiQDs with the above functionalization have shown excellent applications in chemical and biological sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Canham LT (1990) Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers. Appl Phys Lett 57:1046–1048

    Article  CAS  Google Scholar 

  2. Holmes JD, Ziegler KJ, Doty RC, Pell LE, Johnston KP, Korgel BA (2001) Highly luminescent silicon nanocrystals with discrete optical transitions. J Am Chem Soc 123:3743–3748

    Article  CAS  Google Scholar 

  3. Kim BH, Cho CH, Kim TW, Park NM, Sung GY (2005) Photoluminescence of silicon quantum dots in silicon nitride grown by NH3 and SiH4. Appl Phys Lett 86:091908-3

    Google Scholar 

  4. Ruckenstein E, Gourisankar SV (1984) A surface energetic criterion of blood compatibility of foreign surfaces. J Colloid Interface Sci 101:436–451

    Article  CAS  Google Scholar 

  5. Canham LT, Reeves CL, Newey LP, Houlton MR, Cox TI, Buriak J, Stewart MP (1999) Derivatized mesoporous silicon with dramatically improved stability in simulated human blood plasma. Adv Mater 11:1505–1507

    Article  CAS  Google Scholar 

  6. Delerue C, Allan G, Lannoo M (1993) Theoretical aspects of the luminescence of porous silicon. Phys Rev B 48:11024–11036

    Article  CAS  Google Scholar 

  7. Nagesha DK, Whitehead MA, Coffer JL (2005) Biorelevant calcification and non-cytotoxic behavior in silicon nanowires. Adv Mater 17:921–924

    Article  CAS  Google Scholar 

  8. Seotsanyana-Mokhosi I, Kuznetsova N, Nyokong T (2001) Photochemical studies of tetra-2,3-pyridinoporphyrazines. J Photochem Photobiol A 140:215–222

    Article  CAS  Google Scholar 

  9. Wolkin MV, Jorne J, Fauchet PM (1999) Electronic states and luminescence in porous silicon quantum dots: the role of oxygen. Phys Rev Lett 82:197–200

    Article  CAS  Google Scholar 

  10. Zhou ZY, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167

    Article  CAS  Google Scholar 

  11. Bruchez M Jr, Moronne M, Gin P, Weiss S, Alivisatos AP (1998) Semiconductor nanocrystals as fluorescent biological labels. Science 281:2013–2016

    Article  CAS  Google Scholar 

  12. Chao Y, Krishnamurthy S, Montalti M, Lie LH, Houlton A, Horrocks BR, Kjeldgaard L, Dhanak VR, Hunt MRC, Šiller L (2005) Reactions and luminescence in passivated Si nanocrystallites induced by vacuum ultraviolet and soft-X-ray photons. J Appl Phys 98:044316

    Article  Google Scholar 

  13. Li ZF, Kang ET, Neoh KG, Tan KL (1998) Covalent immobilization of glucose oxidase on the surface of polyaniline films graft copolymerized with acrylic acid. Biomat 19:45–53

    Article  CAS  Google Scholar 

  14. Li ZF, Ruckenstein E (2004) Water-soluble poly(acrylic acid) grafted luminescent silicon nanoparticles and their use as fluorescent biological staining labels. Nano Lett 4:1463–1467

    Article  CAS  Google Scholar 

  15. Lie LH, Patole SN, Pike AR, Ryder LC, Connolly BA, Ward AD, Tuite EM, Houlton A, Horrocks BR (2004) Immobilisation and synthesis of DNA on Si(111), nanocrystalline porous silicon and silicon nanoparticles. Faraday Discuss 125:235–249

    Article  CAS  Google Scholar 

  16. Pettigrew KA, Liu Q, Power PP, Kauzlarich SM (2003) Solution synthesis of alkyl- and alkyl/alkoxy-capped silicon nanoparticles via oxidation of Mg2Si. Chem Mater 15:4005–4011

    Article  CAS  Google Scholar 

  17. Rogozhina EV, Eckhoff DA, Gratton E, Braun PV (2006) Carboxyl functionalization of ultrasmall luminescent silicon nanoparticles through thermal hydrosilylation. J Mater Chem 16:1421–1430

    Article  CAS  Google Scholar 

  18. Ruckenstein E, Li ZF (2005) Surface modification and functionalization through the self-assembled monolayer and graft polymerization. Adv Colloid Interface Sci 113:43–63

    Article  CAS  Google Scholar 

  19. Sato S, Swihart MT (2006) Propionic-acid-terminated silicon nanoparticles: synthesis and optical characterization. Chem Mater 18:4083–4088

    Article  CAS  Google Scholar 

  20. Stewart MP, Buriak JM (2001) Exciton mediated hydrosilylation on nanocrystalline silicon surfaces. J Am Chem Soc 123:7821–7830

    Article  CAS  Google Scholar 

  21. Yan CS, Bley RA, Kauzlarich SM, Lee HWH, Delgado GR (1999) Synthesis of alkyl-terminated silicon nanoclusters by a solution route. J Am Chem Soc 121:5191–5195

    Article  Google Scholar 

  22. Li QS, Zhang RQ, Niehaus TA, Frauenheim T, Lee ST (2007) Theoretical studies on optical and electronic properties of propionic-acid-terminated silicon quantum dots. J Chem Theory Comput 3:1518–1526

    Article  CAS  Google Scholar 

  23. Warner JH, Hoshino A, Yamamoto K, Tilley RD (2005) Water-soluble photoluminescent silicon quantum dots. Angew Chem Int Ed 44:4550–4554

    Article  CAS  Google Scholar 

  24. Wang X, Zhang RQ, Niehaus TA, Frauenheim T (2007) Excited state properties of allylamine-capped silicon quantum dots. J Phys Chem C 111:2394–2400

    Article  CAS  Google Scholar 

  25. Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2008) Amine-capped silicon quantum dots. Appl Phys Lett 92:053107

    Article  Google Scholar 

  26. Li QS, Zhang RQ, Lee ST, Niehaus TA, Frauenheim T (2008) Optimal surface functionalization of silicon quantum dots. J Chem Phys 128:244714

    Article  CAS  Google Scholar 

  27. Reboredo FA, Galli G (2004) Theory of alkyl-terminated silicon quantum dots. J Phys Chem B 109:1072–1078

    Article  Google Scholar 

  28. Puzder A, Williamson AJ, Grossman JC, Galli G (2003) Computational studies of the optical emission of silicon nanocrystals. J Am Chem Soc 125:2786–2791

    Article  CAS  Google Scholar 

  29. Zhou Z, Brus L, Friesner R (2003) Electronic structure and luminescence of 1.1- and 1.4-nm silicon nanocrystals: oxide shell versus hydrogen passivation. Nano Lett 3:163–167

    Article  CAS  Google Scholar 

  30. Pauling L (ed) (1960) The nature of the chemical bond and the structure of molecules and crystals. Cornell University Press, New York, pp 88–91

    Google Scholar 

  31. Slater JC (1964) Atomic radii in crystals. J Chem Phys 41:3199

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui-Qin Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, RQ., De Sarkar, A. (2012). Modeling Silicon Nanostructure Surface Functionalization for Biological Detections. In: Zeng, J., Zhang, RQ., Treutlein, H. (eds) Quantum Simulations of Materials and Biological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4948-1_3

Download citation

Publish with us

Policies and ethics