Skip to main content

A Computational Perspective on the Photochemistry of Photosensory Proteins: Phytochromes and Anabaena Sensory Rhodopsin

  • Chapter
Quantum Simulations of Materials and Biological Systems
  • 1162 Accesses

Abstract

The merits of quantum simulations in photobiology are illustrated by presenting recent computational studies investigating the basic photochemistry of phytochromes, a ubiquitous family of photosensory proteins, and Anabaena sensory rhodopsin, a recently discovered member of the rhodopsins. Focusing on the chromophore photoisomerization reactions that trigger these proteins’ responses to light and using density functional methods and multiconfigurational ab initio methods in combination with molecular mechanics, three surprising results can be singled out. First, it is found that the photochemical reactivity of the bilin chromophores of phytochromes is fundamentally different in solution and in the protein, with different photoisomerization channels being preferred. Second, it is found that the two retinal photoisomerizations that govern the interconversion of Anabaena sensory rhodopsin between its two major forms proceed in such a way that the chromophore completes a full 360° rotation during one photocycle. This means that this protein is a biological realization of a light-driven molecular rotor. Third, and finally, it is demonstrated that the stereochemical origin of this remarkable behavior is actually a key element for the function of a class of synthetic light-driven molecular rotors developed from overcrowded alkenes, thereby identifying Anabaena sensory rhodopsin as a possible source of inspiration for the future design and construction of such molecular machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Van der Horst MA, Hellingwerf KJ (2004) Photoreceptor proteins, star actors of modern times: a review of the functional dynamics in the structure of representative members of six different photoreceptor families. Acc Chem Res 37:13–20

    Article  Google Scholar 

  2. Rockwell NC, Su YS, Lagarias JC (2006) Phytochrome structure and signaling mechanisms. Annu Rev Plant Biol 57:837–858

    Article  CAS  Google Scholar 

  3. Rockwell NC, Lagarias JC (2006) The structure of phytochrome: a picture is worth a thousand spectra. Plant Cell 18:4–14

    Article  CAS  Google Scholar 

  4. Röhrig UF, Guidoni L, Laio A, Frank I, Rothlisberger U (2004) A molecular spring for vision. J Am Chem Soc 126:15328–15329

    Article  Google Scholar 

  5. Yamada A, Ishikura T, Yamato T (2004) Role of protein in the primary step of the photoreaction of yellow protein. Proteins 55:1063–1069

    Article  CAS  Google Scholar 

  6. Groenhof G, Bouxin-Cademartory M, Hess B, de Visser SP, Berendsen HJC, Olivucci M, Mark AE, Robb MA (2004) Photoactivation of the photoactive yellow protein: why photon absorption triggers a trans-to-cis isomerization of the chromophore in the protein. J Am Chem Soc 126:4228–4233

    Article  CAS  Google Scholar 

  7. Frutos LM, Andruniów T, Santoro F, Ferré N, Olivucci M (2007) Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc Natl Acad Sci USA 104:7764–7769

    Article  CAS  Google Scholar 

  8. Virshup AM, Punwong C, Pogorelov TV, Lindquist BA, Ko C, Martínez TJ (2009) Photodynamics in complex environments: ab initio multiple spawning quantum mechanical/molecular mechanical dynamics. J Phys Chem B 113:3280–3291

    Article  CAS  Google Scholar 

  9. Hayashi S, Tajkhorshid E, Schulten K (2009) Photochemical reaction dynamics of the primary event of vision studied by means of a hybrid molecular simulation. Biophys J 96:403–416

    Article  CAS  Google Scholar 

  10. Polli D, Altoè P, Weingart O, Spillane KM, Manzoni C, Brida D, Tomasello G, Orlandi G, Kukura P, Mathies RA, Garavelli M, Cerullo G (2010) Conical intersection dynamics of the primary photoisomerization event in vision. Nature 467:440–443

    Article  CAS  Google Scholar 

  11. Borg OA, Durbeej B (2007) Relative ground and excited-state pK a values of phytochromobilin in the photoactivation of phytochrome. J Phys Chem B 111:11554–11565

    Article  CAS  Google Scholar 

  12. Borg OA, Durbeej B (2008) Which factors determine the acidity of the phytochromobilin chromophore of plant phytochrome. Phys Chem Chem Phys 10:2528–2537

    Article  Google Scholar 

  13. Durbeej B (2009) On the primary event of phytochrome: quantum chemical comparison of photoreactions at C4, C10 and C15. Phys Chem Chem Phys 11:1354–1361

    Article  CAS  Google Scholar 

  14. Strambi A, Durbeej B (2011) Initial excited-state relaxation of the bilin chromophores of phytochromes: a computational study. Photochem Photobiol Sci 10:569–579

    Article  CAS  Google Scholar 

  15. Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    Article  CAS  Google Scholar 

  16. Vogeley L, Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL, Luecke H (2004) Anabaena sensory rhodopsin: a photochromic color sensor at 2.0 Å. Science 306:1390–1393

    Article  CAS  Google Scholar 

  17. Koumura N, Zijlstra RWJ, van Delden RA, Harada N, Feringa BL (1999) Light-driven monodirectional molecular rotor. Nature 401:152–155

    Article  CAS  Google Scholar 

  18. Pollard MM, Klok M, Pijper D, Feringa BL (2007) Rate acceleration of light-driven rotary molecular motors. Adv Funct Mater 17:718–729

    Article  CAS  Google Scholar 

  19. Strambi A, Durbeej B, Ferré N, Olivucci M (2010) Anabaena sensory rhodopsin is a light-driven unidirectional rotor. Proc Natl Acad Sci USA 107:21322–21326

    Article  CAS  Google Scholar 

  20. Karniol B, Wagner JR, Walker, JM, Vierstra RD (2005) Phylogenetic analysis of the phytochrome superfamily reveals distinct microbial subfamilies of photoreceptors. Biochem J 392:103–116

    Article  CAS  Google Scholar 

  21. Rüdiger W, Thümmler F (1991) Phytochrome, the visual pigment of plants. Angew Chem Int Ed Engl 30:1216–1228

    Article  Google Scholar 

  22. Wagner JR, Brunzelle JS, Forest KT, Vierstra RD (2005) A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438:325–331

    Article  CAS  Google Scholar 

  23. Wagner JR, Zhang, J, Brunzelle JS, Vierstra RD, Forest KT (2007) High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J Biol Chem 282:12298–12309

    Article  CAS  Google Scholar 

  24. Essen LO, Mailliet J, Hughes J (2008) The structure of a complete phytochrome sensory module in the Pr ground state. Proc Natl Acad Sci USA 105:14709–14714

    Article  CAS  Google Scholar 

  25. Cornilescu G, Ulijasz AT, Cornilescu CC, Markley JL, Vierstra RD (2008) Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state. J Mol Biol 383:403–413

    Article  CAS  Google Scholar 

  26. Yang X, Kuk J, Moffat K (2009) Conformational differences between the Pfr and Pr states in Pseudomonas aeruginosa bacteriophytochrome. Proc Natl Acad Sci USA 106:15639–15644

    Article  CAS  Google Scholar 

  27. Ulijasz AT, Cornilescu G, Cornilescu CC, Zhang J, Rivera M, Markley JL, Vierstra RD (2010) Structural basis for the photoconversion of a phytochrome to the activated Pfr form. Nature 463:250–254

    Article  CAS  Google Scholar 

  28. Sineshchekov VA (1995) Photobiophysics and photobiochemistry. Biochim Biophys Acta 1228:125–164

    Article  Google Scholar 

  29. Matysik J, Hildebrandt P, Schlamann W, Braslavsky SE, Schaffner K (1995) Fourier-transform resonance Raman spectroscopy of intermediates of the phytochrome photocycle. Biochemistry 34:10497–10507

    Article  CAS  Google Scholar 

  30. Foerstendorf H, Mummert E, Schäfer E, Scheer H, Siebert F (1996) Fourier-transform infrared spectroscopy of phytochrome: difference spectra of the intermediates of the photoreactions. Biochemistry 35:10793–10799

    Article  CAS  Google Scholar 

  31. Lagarias JC, Rapoport H (1980) Chromopeptides from phytochrome. The structure and linkage of the Pr form of the phytochrome chromophore. J Am Chem Soc 102:4821–4828

    Article  CAS  Google Scholar 

  32. Rüdiger W, Thümmler F, Cmiel E, Schneider S (1983) Chromophore structure of the physiologically active form (Pfr) of phytochrome. Proc Natl Acad Sci USA 80:6244–6248

    Article  Google Scholar 

  33. Rohmer T, Lang C, Hughes J, Essen LO, Gärtner W, Matysik J (2008) Light-induced chromophore activity and signal transduction in phytochromes observed by 13C and 15N magic-angle spinning NMR. Proc Natl Acad Sci USA 105:15229–15234

    Article  CAS  Google Scholar 

  34. Song C, Psakis G, Lang C, Mailliet J, Gärtner W, Hughes J, Matysik J (2011) Two ground state isoforms and a chromophore D-ring photoflip triggering extensive intramolecular changes in a canonical phytochrome. Proc Natl Acad Sci USA 108:3842–3847

    Article  CAS  Google Scholar 

  35. Andel F III, Lagarias JC, Mathies RA (1996) Resonance Raman analysis of chromophore structure in the Lumi-R photoproduct of phytochrome. Biochemistry 35:15997–16008

    Article  CAS  Google Scholar 

  36. Kneip C, Hildebrandt P, Schlamann W, Braslavsky SE, Mark F, Schaffner K (1999) Protonation state and structural changes of the tetrapyrrole chromophore during the Pr→Pfr phototransformation of phytochrome: a resonance Raman spectroscopic study. Biochemistry 38:15185–15192

    Article  CAS  Google Scholar 

  37. Andel F III, Murphy JT, Haas JA, McDowell MT, van der Hoef I, Lugtenburg J, Lagarias JC, Mathies RA (2000) Probing the photoreaction mechanism of phytochrome through analysis of resonance Raman vibrational spectra of recombinant analogues. Biochemistry 39:2667–2676

    Article  CAS  Google Scholar 

  38. Dasgupta J, Frontiera RR, Taylor KC, Lagarias JC, Mathies RA (2009) Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proc Natl Acad Sci USA 106:1784–1789

    Article  CAS  Google Scholar 

  39. Inomata K, Hammam MAS, Kinoshita H, Murata Y, Khawn H, Noack S, Michael N, Lamparter T (2005) Sterically locked synthetic bilin derivatives and phytochrome Agp1 from Agrobacterium tumefaciens form photoinsensitive Pr- and Pfr-like adducts. J Biol Chem 280:24491–24497

    Article  CAS  Google Scholar 

  40. Van Thor JJ, Mackeen M, Kuprov I, Dwek RA, Wormald MR (2006) Chromophore structure in the photocycle of the cyanobacterial phytochrome Cph1. Biophys J 91:1811–1822

    Article  Google Scholar 

  41. Van Thor JJ, Ronayne KL, Towrie M (2007) Formation of the early photoproduct Lumi-R of cyanobacterial phytochrome Cph1 observed by ultrafast mid-infrared spectroscopy. J Am Chem Soc 129:126–132

    Article  Google Scholar 

  42. Mroginski MA, Murgida DH, Hildebrandt P (2007) The chromophore structural changes during the photocycle of phytochrome: a combined resonance Raman and quantum chemical approach. Acc Chem Res 40:258–266

    Article  CAS  Google Scholar 

  43. Inomata K, Khawn H, Chen LY, Kinoshita H, Zienicke B, Molina I, Lamparter T (2009) Assembly of Agrobacterium phytochromes Agp1 and Agp2 with doubly locked bilin chromophores. Biochemistry 48:2817–2827

    Article  CAS  Google Scholar 

  44. Borucki B, von Stetten D, Seibeck S, Lamparter T, Michael N, Mroginski MA, Otto H, Murgida DH, Heyn MP, Hildebrandt P (2005) Light-induced proton release of phytochrome is coupled to the transient deprotonation of the tetrapyrrole chromophore. J Biol Chem 280:34358–34364

    Article  CAS  Google Scholar 

  45. Von Stetten D, Seibeck S, Michael N, Scheerer P, Mroginski MA, Murgida DH, Krauss N, Heyn MP, Hildebrandt P, Borucki B, Lamparter T (2007) J Biol Chem 282:2116–2123

    Article  Google Scholar 

  46. Xie A, Hoff WD, Kroon AR, Hellingwerf KJ (1996) Glu46 donates a proton to the 4-hydroxycinnamate anion chromophore during the photocycle of photoactive yellow protein. Biochemistry 35:14671–14678

    Article  CAS  Google Scholar 

  47. Neutze R, Pebay-Peyroula E, Edman K, Royant A, Navarro J, Landau EM (2002) Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport. Biochim Biophys Acta 1565:144–167

    Article  CAS  Google Scholar 

  48. Foerstendorf H, Benda C, Gärtner W, Storf M, Scheer H, Siebert F (2001) FTIR studies of phytochrome photoreactions reveal the C=O bands of the chromophore: consequences for its protonation states, conformation, and protein interaction. Biochemistry 40:14952–14959

    Article  CAS  Google Scholar 

  49. Strauss HM, Hughes J, Schmieder P (2005) Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1. Biochemistry 44:8244–8250

    Article  CAS  Google Scholar 

  50. Rohmer T, Strauss H, Hughes J, de Groot H, Gärtner W, Schmieder P, Matysik J (2006) 15N MAS NMR studies of Cph1 phytochrome: chromophore dynamics and intramolecular signal transduction. J Phys Chem B 110:20580–20585

    Article  CAS  Google Scholar 

  51. Kawanabe A, Furutani Y, Jung KH, Kandori H (2006) FTIR study of the photoisomerization processes in the 13-cis and all-trans forms of Anabaena sensory rhodopsin at 77 K. Biochemistry 45:4362–4370

    Article  CAS  Google Scholar 

  52. Sineshchekov OA, Trivedi VD, Sasaki J, Spudich JL (2005) Photochromicity of Anabaena sensory rhodopsin, an atypical microbial receptor with a cis-retinal light-adapted form. J Biol Chem 280:14663–14668

    Article  CAS  Google Scholar 

  53. Kawanabe A, Furutani Y, Jung KH, Kandori H (2007) Photochromism of Anabaena sensory rhodopsin. J Am Chem Soc 129:8644–8649

    Article  CAS  Google Scholar 

  54. Kottas GS, Clarke LI, Horinek D, Michl J (2005) Artificial molecular rotors. Chem Rev 105:1281–1376

    Article  CAS  Google Scholar 

  55. Kay ER, Leigh DA, Zerbetto F (2007) Synthetic molecular motors and mechanical machines. Angew Chem Int Ed Engl 46:72–191

    Article  CAS  Google Scholar 

  56. Feringa BL (2007) The art of building small: from molecular switches to molecular motors. J Org Chem 72:6635–6652

    Article  CAS  Google Scholar 

  57. Michl J, Sykes ECH (2009) Molecular rotors and motors: recent advances and future challenges. ACS Nano 3:1042–1048

    Article  CAS  Google Scholar 

  58. Kinbara K, Aida T (2005) Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem Rev 105:1377–1400

    Article  CAS  Google Scholar 

  59. Browne WR, Feringa BL (2006) Making molecular machines work. Nat Nanotechnol 1:25–34

    Article  CAS  Google Scholar 

  60. Balzani V, Credi A, Venturi M (2009) Light powered molecular machines. Chem Soc Rev 38:1542–1550

    Article  CAS  Google Scholar 

  61. Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464

    Article  CAS  Google Scholar 

  62. Stratmann RE, Scuseria GE (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109:8218–8224

    Article  CAS  Google Scholar 

  63. Serrano-Andrés L, Merchán M (2005) Quantum chemistry of the excited state: 2005 overview. J Mol Struct, Theochem 729:99–108

    Article  Google Scholar 

  64. Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037

    Article  CAS  Google Scholar 

  65. Casida ME (2009) Time-dependent density-functional theory for molecules and molecular solids. J Mol Struct, Theochem 914:3–18

    Article  CAS  Google Scholar 

  66. Andersson K, Malmqvist PÅ, Roos BO (1992) Second-order perturbation theory with a complete active space self-consistent field reference function. J Chem Phys 96:1218–1226

    Article  CAS  Google Scholar 

  67. Tozer DJ, Amos RD, Handy NC, Roos BO, Serrano-Andrés L (1999) Does density functional theory contribute to the understanding of excited states of unsaturated organic compounds? Mol Phys 97:859–868

    Article  CAS  Google Scholar 

  68. Goerigk L, Moellmann J, Grimme S (2009) Computation of accurate excitation energies for large organic molecules with double-hybrid density functionals. Phys Chem Chem Phys 11:4611–4620

    Article  CAS  Google Scholar 

  69. Ljubić I, Sabljić A (2011) CASSCF/CASPT2 and TD-DFT study of valence and Rydberg electronic transitions in fluorene, carbazole, dibenzofuran, and dibenzothiophene. J Phys Chem A 115:4840–4850

    Article  Google Scholar 

  70. Maitra NT, Zhang F, Cave RJ, Burke K (2004) Double excitations within time-dependent density functional theory linear response. J Chem Phys 120:5932–5937

    Article  CAS  Google Scholar 

  71. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  72. Ferré N, Olivucci M (2003) Probing the rhodopsin cavity with reduced retinal models at the CASPT2//CASSCF/AMBER level of theory. J Am Chem Soc 125:6868–6869

    Article  Google Scholar 

  73. Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem, Int Ed 48:1198–1229

    Article  CAS  Google Scholar 

  74. Durbeej B, Eriksson LA (2006) Protein-bound chromophores astaxanthin and phytochromobilin: excited state quantum chemical studies. Phys Chem Chem Phys 8:4053–4071

    Article  CAS  Google Scholar 

  75. Furche F, Ahlrichs R (2002) Adiabatic time-dependent density functional methods for excited state properties. J Chem Phys 117:7433–7447

    Article  CAS  Google Scholar 

  76. Frisch MJ et al. (2009) GAUSSIAN 09 (Revision A.02). Gaussian Inc, Wallingford

    Google Scholar 

  77. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Electronic structure calculations on workstation computers: the program system TURBOMOLE. Chem Phys Lett 162:165–169

    Article  CAS  Google Scholar 

  78. Ditto M, Brunner H, Lippitsch ME (1991) Picosecond spectroscopy of dihydro biliverdin. Chem Phys Lett 185:61–64

    Article  CAS  Google Scholar 

  79. Cancès E, Mennucci B, Tomasi J (1997) A new integral equation formalism for the polarizable continuum model: theoretical background and applications to isotropic and anisotropic dielectrics. J Chem Phys 107:3032–3041

    Article  Google Scholar 

  80. Zhao Y, Truhlar DG (2006) Density functional for spectroscopy: no long-range self-interaction error, good performance for Rydberg and charge-transfer states, and better performance on average than B3LYP for ground states. J Phys Chem A 110:13126–13130

    Article  CAS  Google Scholar 

  81. Yanai T, Tew DP, Handy NC (2004) A new hybrid exchange-correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem Phys Lett 393:51–57

    Article  CAS  Google Scholar 

  82. Vydrov OA, Scuseria GE (2006) Assessment of a long-range corrected hybrid functional. J Chem Phys 125:234109

    Article  Google Scholar 

  83. Durbeej B, Borg OA, Eriksson LA (2004) Phytochromobilin C15Z,syn→C15E,anti isomerization: concerted or stepwise? Phys Chem Chem Phys 6:5066–5073

    Article  CAS  Google Scholar 

  84. Altoè P, Climent T, De Fusco GC, Stenta M, Bottoni A, Serrano-Andrés L, Merchán M, Orlandi G, Garavelli M (2009) Deciphering intrinsic deactivation/isomerization routes in a phytochrome chromophore model. J Phys Chem B 113:15067–15073

    Article  Google Scholar 

  85. Durbeej B, Borg OA, Eriksson LA (2005) Computational evidence in favor of a protonated chromophore in the photoactivation of phytochrome. Chem Phys Lett 416:83–88

    Article  CAS  Google Scholar 

  86. Schapiro I, Melaccio F, Laricheva EN, Olivucci M (2011) Using the computer to understand the chemistry of conical intersections. Photochem Photobiol Sci 10:867–886

    Article  CAS  Google Scholar 

  87. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM Jr, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. J Am Chem Soc 117:5179–5197

    Article  CAS  Google Scholar 

  88. Andruniów T, Ferré N, Olivucci M (2004) Structure, initial excited-state relaxation, and energy storage of rhodopsin resolved at the multiconfigurational perturbation theory level. Proc Natl Acad Sci USA 101:17908–17913

    Article  Google Scholar 

  89. Wand A, Rozin R, Eliash T, Jung KH, Sheves M, Ruhman S (2011) Asymmetric toggling of a natural photoswitch: ultrafast spectroscopy of Anabaena sensory rhodopsin. J Am Chem Soc 133:20922–20932

    Article  CAS  Google Scholar 

  90. Levine BG, Ko C, Quenneville J, Martínez TJ (2006) Conical intersections and double excitations in time-dependent density functional theory. Mol Phys 104:1039–1051

    Article  CAS  Google Scholar 

  91. Minezawa N, Gordon MS (2009) Optimizing conical intersections by spin-flip density functional theory: application to ethylene. J Phys Chem A 113:12749–12753

    Article  CAS  Google Scholar 

  92. Rohrdanz MA, Martins KM, Herbert JM (2009) A long-range-corrected density functional that performs well for both ground-state properties and time-dependent density functional theory excitation energies, including charge-transfer excited states. J Chem Phys 130:054112

    Article  Google Scholar 

  93. Jacquemin D, Perpète EA, Ciofini I, Adamo, C, Valero R, Zhao Y, Truhlar DG (2010) On the performances of the M06 family of density functionals for electronic excitation energies. J Chem Theory Comput 6:2071–2085

    Article  CAS  Google Scholar 

  94. Kaduk B, Van Voorhis T (2010) Communication: conical intersections using constrained density functional theory-configuration interaction. J Chem Phys 133:061102

    Article  Google Scholar 

  95. Rinkevicius Z, Vahtras O, Ågren H (2010) Spin-flip time dependent density functional theory applied to excited states with single, double, or mixed electron excitation character. J Chem Phys 133:114104

    Article  Google Scholar 

  96. Liu J, Liang W (2011) Analytical Hessian of electronic excited states in time-dependent density functional theory with Tamm-Dancoff approximation. J Chem Phys 135:014113

    Article  Google Scholar 

  97. Kats D, Korona T, Schütz M (2006) Local CC2 electronic excitation energies for large molecules with density fitting. J Chem Phys 125:104106

    Article  Google Scholar 

  98. Aquilante F, Pedersen TB, Lindh R, Roos BO, Sánchez de Merás A, Koch H (2008) J Chem Phys 129:024113

    Article  Google Scholar 

  99. Boström J, Delcey MG, Aquilante F, Serrano-Andrés L, Pedersen TB, Lindh R (2010) Calibration of Cholesky auxiliary basis sets for multiconfigurational perturbation theory calculations of excitation energies. J Chem Theory Comput 6:747–754

    Article  Google Scholar 

Download references

Acknowledgements

Parts of the research presented in this work were done in collaboration with Angela Strambi and Massimo Olivucci at the University of Siena. The author would also like to thank Linköping University, the Swedish Research Council (VR), the Carl Trygger Foundation, and the Olle Engkvist Foundation for financial support, and the supercomputing centers at Linköping University (NSC) and Uppsala University (UPPMAX) for generous grants of computing time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Durbeej .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Durbeej, B. (2012). A Computational Perspective on the Photochemistry of Photosensory Proteins: Phytochromes and Anabaena Sensory Rhodopsin. In: Zeng, J., Zhang, RQ., Treutlein, H. (eds) Quantum Simulations of Materials and Biological Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4948-1_10

Download citation

Publish with us

Policies and ethics