Skip to main content

Advances in Mechanical Dewatering of Wastewater Sludge Treatment

  • Chapter
  • First Online:
Book cover Wastewater Reuse and Management

Abstract

Dewatering of wastewater sludge is a difficult process. The difficulty has been attributed mainly to the fact that particles are very fine, colloidal in nature and possess a gel-like structure due to polymeric flocculation. In order to tackle the limitations in wastewater sludge dewatering, new technologies have been developed in recent years. Some technologies, such as wastewater sludge digestion, wastewater sludge mineralisation or peroxidation, allow to reduce the amount of wastewater sludge to be dewatered, or the dewaterability of the sludge, by changing the biochemical composition. Nevertheless, wastewater sludge remains hard to dewater, and therefore, an improvement in the conventional dewatering equipments is desirable. Therefore, current research tends to propose potential alternatives to enhance the dewatering ability of conventional processes, to increase the final dry solids content, and to accelerate the dewatering process with low energy consumption compared to thermal drying.

Different options have been investigated to enhance the wastewater sludge dewatering. Some of the new developments to be assimilated and assembled in this chapter include intensification of the dewatering process which combines (1) mechanical and thermal effects, (2) mechanical force and an electric field, (3) the superimposition of ultrasounds and/or magnetic fields, (4) the combined fields (e.g. electric and ultrasonic) applied simultaneously, (5) both shear and compressive forces, (6) and microwave-assisted dewatering.

This chapter focuses on the scientific and practical aspects of the application of an additional force field in laboratory/industrial dewatering and discusses this in relation to conventional dewatering techniques in terms of water content/or dry solids content and energy consumption. Indeed, the aim of this chapter is to provide a fundamental understanding of the different process variables and configurations in order to identify potential improvements and future innovative technologies for dewatering enhancement. Following a detailed outline of research in one of the most promising alterative techniques, the electrically assisted dewatering of wastewater sludge, experimental data obtained by the authors are presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Saveyn H, Meersseman S, Thas O, Van Der Meeren P (2005) Influence of polyelectrolyte characteristics on pressure-driven activated sludge dewatering. Colloids Surf A 262:40–51

    CAS  Google Scholar 

  2. Tchobanoglou G, Burton FL, Stensel HD (2003) Wastewater engineering: treatment and reuse. Metcalf and Eddy Inc./McGraw-Hill, New York

    Google Scholar 

  3. Glendinning S, Lamont-Black J, Jones CJFP (2007) Treatment of sewage sludge using electrokinetic geosynthetics. J Hazard Mater 139:491–499

    CAS  Google Scholar 

  4. Glendinning S, Mok CK, Kalumba D, Rogers CDF, Hunt DVL (2010) Design framework for electrokinetically enhanced dewatering of sludge. J Environ Eng 136:417–426

    CAS  Google Scholar 

  5. Vaxelaire J, Bongiovanni JM, Puiggali JR (1999) Mechanical dewatering and thermal drying of residual sludge. Environ Technol 20:29–36

    CAS  Google Scholar 

  6. Vaxelaire J, Olivier J (2006) Conditioning for municipal sludge dewatering. From filtration compression cell tests to belt press. Dry Technol 24:1225–1233

    CAS  Google Scholar 

  7. Tuan PA, Sillanpää M (2010) Migration of ions and organic matter during electro-dewatering of anaerobic sludge. J Hazard Mater 173:54–61

    CAS  Google Scholar 

  8. Tsang KR, Vesilind PA (1990) Moisture distribution in sludge. Water Sci Technol 22:135–142

    CAS  Google Scholar 

  9. Lee DJ, Lee SF (1995) Measurement of bound water content in sludge: the use of differential scanning calorimetry (DSC). J Chem Technol Biotechnol 65:359–365

    Google Scholar 

  10. Chen G, Yue PL, Mujumdar AS (2002) Sludge dewatering and drying. Dry Technol 20:883–916

    CAS  Google Scholar 

  11. Mahmoud A, Olivier J, Vaxelaire J, Hoadley AFA (2010) Electrical field: a historical review of its application and contributions in wastewater sludge dewatering. Water Res 44:2381–2407

    CAS  Google Scholar 

  12. Bouyoucos GJ (1921) A new classification of soil moisture. Soil Sci 11:33–48

    Google Scholar 

  13. Vesilind PA (1979) Treatment and disposal of wastewater sludge. Ann Arbor Science, Michigan

    Google Scholar 

  14. Smollen M (1988) Moisture retention characteristics and volume reduction of municipal sludges. Water SA 14:25–28

    CAS  Google Scholar 

  15. Smollen M (1990) Evaluation of municipal sludge drying and dewatering with respect to sludge volume reduction. Water Sci Technol 22:153–161

    CAS  Google Scholar 

  16. Vesilind PA, Martel CJ (1990) Freezing of water in wastewater sludge. J Environ Eng 116:854–862

    CAS  Google Scholar 

  17. Robinson J, Knocke WR (1992) Use of dilatometric and drying techniques for assessing sludge dewatering characteristics. Water Environ Res 64:60–68

    CAS  Google Scholar 

  18. Smith JK, Vesilind PA (1995) Dilatometric measurement of bound water in waste-water sludge. Water Res 29:2621–2626

    CAS  Google Scholar 

  19. Vesilind PA, Hsu CC (1997) Limits of sludge dewaterability. Water Sci Technol 36:87–91

    Google Scholar 

  20. Vesilind PA (1994) The role of water in sludge dewatering. Water Environ Res 66:4–11

    CAS  Google Scholar 

  21. Vaxelaire J, Cézac P (2004) Moisture distribution in activated sludges: a review. Water Res 38:2215–2230

    CAS  Google Scholar 

  22. Tarleton ES (1992) The role of field-assisted techniques in solid/liquid separation. Filtr Sep 29:246–252

    CAS  Google Scholar 

  23. Mahmood T, Zawadski M, Banerjee S (1998) Pilot study of impulse drying industrial sludge. Environ Sci Technol 32:1813–1816

    CAS  Google Scholar 

  24. Strauss K (1998) Method and device for reducing the water content of water containing brown coal. Eur Pat EP784660

    Google Scholar 

  25. Peuker UA, Stahl W (2001) Steam pressure filtration mechanical thermal dewatering process. Dry Technol 19:807–847

    CAS  Google Scholar 

  26. Couturier S (2002) Etude de la déshydration mécanique assistée thermiquement. PhD dissertation thesis, Université de Bordeaux I, France

    Google Scholar 

  27. Hulston J, De Kretser RG, Scales PJ (2004) Effect of temperature on the dewaterability of hematite suspensions. Int J Miner Process 73:269–279

    CAS  Google Scholar 

  28. Hulston J, Favas G, Chaffee AL (2005) Physico-chemical properties of Loy Yang lignite dewatered by mechanical thermal expression. Fuel 84:1940–1948

    CAS  Google Scholar 

  29. Hulston J, Chaffee A, Bergins C, Strauß K (2005) Comparison of physico-chemical properties of various lignites treated by mechanical thermal expression. Coal Prep 25:269–293

    CAS  Google Scholar 

  30. Fernandez A, Arlabosse P, Descoins N (2005) Thermally assisted mechanical dewatering: state of the art and new developments. Chem Eng Trans 7:737–742

    Google Scholar 

  31. Fernandez A, Auduc B, Arlabosse P, Mahmoud A (2009) Method for mechanical dehydration with thermal assistance. Eur Pat EP2212637

    Google Scholar 

  32. Lee EL (2006) Thermal dewatering (TDW) to reduce the water content. Dry Technol 24:225–232

    CAS  Google Scholar 

  33. Clayton SA, Scholes ON, Hoadley AFA, Wheeler RA, Mcintosh MJ, Huynh DQ (2006) Dewatering of biomaterials by mechanical thermal expression. Dry Technol 24:819–834

    Google Scholar 

  34. Clayton SA, Wheeler RA, Hoadley AFA (2007) Pore destruction resulting from mechanical thermal expression. Dry Technol 25:533–546

    CAS  Google Scholar 

  35. Couturier S, Valat M, Vaxelaire J, Puiggali JR (2007) Enhanced expression of filter cakes using a local thermal supply. Sep Purif Technol 57:321–328

    CAS  Google Scholar 

  36. Mahmoud A, Fernandez A, Arlabosse P (2008) Thermally-assisted mechanical dewatering (TAMD) of suspensions of fine particles: analysis of the influence of the operating conditions using the response surface methodology. Chemosphere 72:1765–1773

    CAS  Google Scholar 

  37. Mahmoud A, Arlabosse P, Fernandez MA (2011) Application of thermally assisted mechanical dewatering process to biomass. Biomass Bioenerg 35:288–297

    CAS  Google Scholar 

  38. Lee JE, Lee JK, Choi HK (2007) Filter Press for electro-dewatering of waterworks sludge. Dry Technol 25:1649–1657

    CAS  Google Scholar 

  39. Curvers D, Maes KC, Saveyn H, De Baets B (2007) Modelling the electro-osmotically enhanced pressure dewatering of activated sludge. Chem Eng Sci 62:2267–2276

    CAS  Google Scholar 

  40. Mujumdar AS, Yoshida H (2008) Electro-osmotic dewatering (EOD) of bio-materials. In: Vorobiev E, Lebovka N (eds) Electrotechnologies for extraction from food plants and biomaterials, 1st edn. Springer, New York

    Google Scholar 

  41. Lebovka NI, Praporscic I, Vorobiev E (2003) Enhanced expression of juice from soft vegetable tissues by pulsed electric fields: consolidation stages analysis. J Food Eng 59:309–317

    Google Scholar 

  42. Praporscic I, Muravetchi V, Vorobiev E (2004) Constant rate expressing of juice from biological tissue enhanced by pulsed electric field. Dry Technol 22:2395–2408

    Google Scholar 

  43. Gachovska T, Ngadi MO, Raghavan GSV (2006) Pulsed electric field assisted juice extraction from alfalfa. Can Biosyst Eng 48:33–37

    Google Scholar 

  44. Grimi N, Praporscic I, Lebovka N, Vorobiev E (2007) Selective extraction from carrot slices by pressing and washing enhanced by pulsed electric fields. Sep Purif Technol 58:267–273

    CAS  Google Scholar 

  45. Riera-Franco de Sarabia E, Gallego-Juárez JA (2000) Application of high-power ultrasound to enhance fluid/solid particle separation processes. Ultrasonics 38:642–646

    CAS  Google Scholar 

  46. Smythe MC, Wakeman RJ (2000) The use of acoustic fields as a filtration and dewatering aid. Ultrasonics 38:657–661

    CAS  Google Scholar 

  47. Tao D, Parekh BK (2000) Enhanced fine coal beneficiation using ultrasonic energy. Miner Metall Process 17:252–258

    CAS  Google Scholar 

  48. Stolarski M, Fuchs B, Bogal Kassa S, Eichholz C, Nirschl H (2006) Magnetic field enhanced press-filtration. Chem Eng Sci 61:6395–6403

    CAS  Google Scholar 

  49. Eichholz C, Stolarski M, Gortz V, Nirschl H (2008) Magnetic field enhanced cake filtration of superparamagnetic PVAc-particle. Chem Eng Sci 63:3193–3200

    CAS  Google Scholar 

  50. Wakeman RJ, Smythe MC (2000) Clarifying filtration of fine particle suspensions aided by electrical and acoustic fields. Chem Eng Res Des 78:125–135

    CAS  Google Scholar 

  51. Wakeman RJ, Tarleton ES (1999) Filtration. Equipment selection modelling and process simulation. Elsevier advanced technology, Oxford

    Google Scholar 

  52. Wakeman RJ, Zhang GM, Koenders MA (2000b) Effect of rotational flow induced in a rotary piston press on the formation and properties of filter cakes. In: Proceedings of 8th world filtration congress, pp 1121–1124

    Google Scholar 

  53. Olivier J (2003) Etudes des filtres à bandes pour la déshydratation mécanique des boues résiduaires urbaines. PhD dissertation thesis, Université de Pau et des Pays de l’Adour, Pau, France

    Google Scholar 

  54. Gundogdu O, Koenders MA, Wakeman RJ, Wu P (2003) Permeation through a bed on a vibrating medium: theory and experimental results. Chem Eng Sci 58:1703–1713

    CAS  Google Scholar 

  55. Gundogdu O, Koenders MA, Wakeman RJ, Wu P (2003) Vibration assisted dead-end filtration: experiments and theoretical concepts. Chem Eng Res Des 81:1–9

    Google Scholar 

  56. Gundogdu O, Koenders MA, Wakeman RJ, Wu P (2003) Permeation with vibrated media: experiments and modelling. Filtr Soc 3:106–113

    Google Scholar 

  57. Collins AG, Mitra S, Pavlostathis SG (1991) Microwave heating for sludge dewatering and drying. Res J Water Pollut Control Fed 63:921–924

    CAS  Google Scholar 

  58. Tchobanoglous G, Burton FL (1991) Wastewater engineering treatment, disposal, and reuse. McGraw-Hill, New York

    Google Scholar 

  59. Novak JT (2001) Dewatering. In: Spinosa L, Vesilind PA (eds) Sludge into biosolids: processing, disposal and utilization. IWA Pub, London

    Google Scholar 

  60. Andreasen I, Nielsen B (1993) A comparative-study of full-scale sludge dewatering equipment. Water Sci Technol 28:37–45

    CAS  Google Scholar 

  61. Lockhart NC (1986) Electro-dewatering of fine suspensions. In: Muralidhara HS (ed) Advanced in solid-liquid separation. Battelle, Columbus

    Google Scholar 

  62. Lawler DF, Chung YJ, Hwang SJ, Hull BA (1986) Anaerobic digestion: effects on particle size and dewaterability. J Water Pollut Control Fed 58:1107–1117

    CAS  Google Scholar 

  63. Li DH, Ganczarczyk JJ (1990) Structure of activated-sludge flocs. Biotechnol Bioeng 35:57–65

    CAS  Google Scholar 

  64. Snidaro D, Zartarian F, Jorand F, Bottero JY, Block JC, Manem J (1997) Characterization of activated sludge flocs structure. Water Sci Technol 36:313–320

    CAS  Google Scholar 

  65. Saveyn H (2005) Modelling and optimization of sludge conditioning and electric field assisted dewatering. PhD dissertation thesis, Ghent University, Belgium

    Google Scholar 

  66. Govoreanu R (2004) Activated sludge flocculation dynamics: on-line measurement methodology and modelling. PhD dissertation thesis, Ghent University, Belgium

    Google Scholar 

  67. Novak JT, Agerbaek ML, Sorensen BL, Hansen JA (1999) Conditioning, filtering, and expression waste activated sludge. J Environ Eng 125:816–824

    CAS  Google Scholar 

  68. Dentel SK (2001) Conditioning. In: Spinosa L, Vesilind PA (eds) Sludge into biosolids: processing, disposal and utilization. IWA Pub, London

    Google Scholar 

  69. Saveyn H, Hendrickx PMS, Dentel SK, Martins JC, Meeren PV (2008) Quantification of hydrolytic charge loss of DMAEA-Q-based polyelectrolytes by proton NMR spectroscopy and implementations for colloid titration. Water Res 42:2718–2728

    CAS  Google Scholar 

  70. Saveyn H, Curvers D, Thas O, Meeren PV (2008) Optimisation of sewage sludge conditioning and pressure dewatering by statistical modelling. Water Res 42:1061–1074

    CAS  Google Scholar 

  71. Chen Y, Yang H, Gu G (2001) Effect of acid and surfactant treatment on activated sludge dewatering and settling. Water Res 35:2615–2620

    CAS  Google Scholar 

  72. Vosteen B, Weissenberg HG (2000) New conditioning process for the dewatering of wastewater treatment sludge. Chem Eng Technol 23:677–681

    CAS  Google Scholar 

  73. Neyens E, Baeyens J (2003) A review of classic Fenton‘s peroxidation as an advanced oxidation technique. J Hazard Mater 98:33–50

    CAS  Google Scholar 

  74. Watanabe Y, Tanaka K (1999) Innovative sludge handling through palletization/thickening. Water Res 33:3245–3252

    Google Scholar 

  75. Lee CH, Liu JC (2000) Enhanced sludge dewatering by dual polyelectrolytes conditioning. Water Res 34:4430–4436

    CAS  Google Scholar 

  76. Thapa KB, Qi Y, Clayton SA, Hoadley AFA (2009) Lignite aided dewatering of digested sewage sludge. Water Res 43:623–634

    CAS  Google Scholar 

  77. Lee JE, Lee JK, Kim DS (2010) A study of the improvement in dewatering behavior of wastewater sludge through the addition of fly ash. Korean J Chem Eng 27:862–867

    CAS  Google Scholar 

  78. Erdincler A, Vesilind PA (2000) Effect of sludge cell disruption on compactibility of biological sludges. Water Sci Technol 42:119–126

    CAS  Google Scholar 

  79. Neyens E, Baeyens J (2003) A review of thermal sludge pre-treatment processes to improve dewaterability. J Hazard Mater 98:51–67

    CAS  Google Scholar 

  80. Zheng JH, Graff RA, Fillos J, Rinard I (1998) Incorporation of rapid thermal conditioning into a wastewater treatment plant. Fuel Process Technol 56:183–200

    CAS  Google Scholar 

  81. Neyens E, Baeyens J, Creemers C (2003) Alkaline thermal sludge hydrolysis. J Hazard Mater 97:295–314

    CAS  Google Scholar 

  82. Neyens E, Baeyens J, Dewil R, De Heyder B (2004) Advanced sludge treatment affects extracellular polymeric substances to improve activated sludge dewatering. J Hazard Mater 106:83–92

    CAS  Google Scholar 

  83. Örmeci B, Aarne Vesilind P (2001) Effect of dissolved organic material and cations on freeze-thaw conditioning of activated and alum sludges. Water Res 35:4299–4306

    Google Scholar 

  84. Sanin FD, Vesilind PA, Martel CJ (1994) Pathogen reduction capabilities of freeze/thaw sludge conditioning. Water Res 28:2393–2398

    Google Scholar 

  85. HellstrÖm D, KvarnstrÖm E (1997) Natural sludge dewatering. 1. Combination of freezing, thawing, and drying as dewatering methods. J Cold Reg Eng 11:1–14

    Google Scholar 

  86. Kowalska E, Chmura K, Bien J (1978) Ultrasonics in the dehydration process of sludge. Ultrasonics 16:183–185

    CAS  Google Scholar 

  87. Bien J (1988) Ultrasonic preparation of sludges to improve dewatering. Filtr Sep 25:425–426

    CAS  Google Scholar 

  88. Sakai Y, Kurakata S, Takahashi F (1991) Magnetic forced sedimentation of flocs in activated sludge supplemented with ferromagnetic powder of iron oxide. J Ferment Bioeng 71:208–210

    CAS  Google Scholar 

  89. Sakai Y, Terakado T, Takahashi F (1994) A sewage treatment process using highly condensed activated sludge with an apparatus for magnetic separation. J Ferment Bioeng 78:120–122

    CAS  Google Scholar 

  90. Sakai Y, Miama T, Takahashi F (1997) Simultaneous removal of organic and nitrogen compounds in intermittently aerated activated sludge process using magnetic separation. Water Res 31:2113–2116

    CAS  Google Scholar 

  91. Bien JB, Kempa ES, Bien JD (1997) Influence of ultrasonic field on structure and parameters of sewage sludge for dewatering process. Water Sci Technol 36:287–291

    CAS  Google Scholar 

  92. Bien J, Wolny L (1997) Changes of some sewage sludge parameters prepared with an ultrasonic field. Water Sci Technol 36:101–106

    CAS  Google Scholar 

  93. Singh BP (1999) Ultrasonically assisted rapid solid-liquid separation of fine clean coal particles. Miner Eng 12:437–443

    CAS  Google Scholar 

  94. Chu CP, Chang B-V, Liao GS, Jean DS, Lee DJ (2001) Observations on changes in ultrasonically treated waste-activated sludge. Water Res 35:1038–1046

    CAS  Google Scholar 

  95. Hattori S, Watanabe M, Endo T, Togii H, Sasaki K (2001) Effects of an external magnetic field on the sedimentation of activated sludge. World J Microbiol Biotechnol 17:279–285

    CAS  Google Scholar 

  96. Hattori S, Watanabe M, Osono H, Togii H, Sasaki K (2001) Effects of an external magnetic field on the flock size and sedimentation of activated sludge. World J Microbiol Biotechnol 17:833–838

    Google Scholar 

  97. Hattori S, Watanabe M, Sasaki K, Yasuharu H (2002) Magnetization of activated sludge by an external magnetic field. Biotechnol Lett 24:65–69

    CAS  Google Scholar 

  98. Menéndez JA, Domínguez A, Inguanzo M, Pis JJ (2004) Microwave pyrolysis of sewage sludge: analysis of the gas fraction. J Anal Appl Pyrolysis 71:657–667

    Google Scholar 

  99. Yin X, Han P, Lu X, Wang Y (2004) A review on the dewaterability of bio-sludge and ultrasound pretreatment. Ultrason Sonochem 11:337–348

    CAS  Google Scholar 

  100. Wojciechowska E (2005) Application of microwaves for sewage sludge conditioning. Water Res 39:4749–4754

    CAS  Google Scholar 

  101. Dewil R, Baeyens J, Goutvrind R (2006) Ultrasonic treatment of waste activated sludge. Environ Prog 25:121–128

    CAS  Google Scholar 

  102. Yin X, Lu X, Han P, Wang Y (2006) Ultrasonic treatment on activated sewage sludge from petro-plant for reduction. Ultrasonics 44:e397–e399

    Google Scholar 

  103. Khanal SK, Grewell D, Sung S, Van Leeuwen J (2007) Ultrasound applications in wastewater sludge pretreatment: a review. Crit Rev Environ Sci Technol 37:277–313

    CAS  Google Scholar 

  104. KyllÖnen H, Pirkonen P, GrÖnroos A (2007) Ultrasonically assisted dewatering of waste activated sludge. In: Proceedings of the 19th international congress on acoustics, Madrid, Spain

    Google Scholar 

  105. Na S, Kim Y-U, Khim J (2007) Physiochemical properties of digested sewage sludge with ultrasonic treatment. Ultrason Sonochem 14:281–285

    CAS  Google Scholar 

  106. Feng X, Deng J, Lei H, Bai T, Fan Q, Li Z (2009) Dewaterability of waste activated sludge with ultrasound conditioning. Bioresour Technol 100:1074–1081

    CAS  Google Scholar 

  107. Huan L, Yiying J, Mahar RB, Zhiyu W, Yongfeng N (2009) Effects of ultrasonic disintegration on sludge microbial activity and dewaterability. J Hazard Mater 161:1421–1426

    Google Scholar 

  108. Yu Q, Lei H, Yu G, Feng X, Li Z, Wu Z (2009) Influence of microwave irradiation on sludge dewaterability. Chem Eng J 155:88–93

    CAS  Google Scholar 

  109. Yu Q, Lei H, Li Z, Li H, Chen K, Zhang X, Liang R (2010) Physical and chemical properties of waste-activated sludge after microwave treatment. Water Res 44:2841–2849

    CAS  Google Scholar 

  110. Saveyn H, Curvers D, Jacobsen R, Meeren PV (2010) Improved dewatering by freeze–thawing of predewatered sludge cakes. Asia Pac J Chem Eng 5:798–803

    CAS  Google Scholar 

  111. Pilli S, Bhunia P, Yan S, LeBlanc RJ, Tyagi RD, Surampalli RY (2011) Ultrasonic pretreatment of sludge: a review. Ultrason Sonochem 18:1–18

    CAS  Google Scholar 

  112. La Heij EJ (1994) An analysis of sludge filtration and expression. PhD dissertation thesis, TU Eindhoven, the Netherlands

    Google Scholar 

  113. La Heij EJ, Kerkhof PJAM, Kopinga K, Pel L (1996) Determining porosity profiles during filtration and expression of sewage sludge by NMR imaging. AIChE J 42:953–959

    Google Scholar 

  114. Reichmann B, Tomas J (2001) Expression behaviour of fine particle suspensions and the consolidated cake strength. Powder Technol 121:182–189

    CAS  Google Scholar 

  115. Falk T, Wallin ML (1987) Influence of energy in filter cake dewatering. Aufbereit-Tech 28:115–125

    CAS  Google Scholar 

  116. Bergins C, Berger S, Strauss K (1999) Mechanical/thermal dewatering–a perspective for an efficient solid/liquid separation. Ceram Forum Int 76:8–12

    CAS  Google Scholar 

  117. Bergins C, Berger S, Strauss K (1999) Dewatering of fossil fuel and suspension of ultrafine particles by mechanical/thermal dewatering. Chem Eng Technol 22:923–927

    CAS  Google Scholar 

  118. Bergins C, Berger S, Strauss K (1998) Process technology for mechanical/thermal dewatering I. Aufbereit-Tech 39:58–70

    CAS  Google Scholar 

  119. Artanto Y, Chaffee AL (2005) Dewatering low rank coals by mechanical thermal expression (MTE) and its influence on organic carbon and inorganic removal. Coal Prep 25:251–267

    CAS  Google Scholar 

  120. Wheeler RA, Hoadley AFA, Clayton SA (2009) Modelling the mechanical thermal expression behaviour of lignite. Fuel 88:1741–1751

    CAS  Google Scholar 

  121. Cussó Grau N (2009) Energy balance in thermal assisted mechanical dewatering (TAMD) process. Master thesis, Escola Tècnica Superior d’Enginyeria Industrial de Barcelona Mobilitat, Barcelona, Spain

    Google Scholar 

  122. Bergins C, Hulston J, Strauss K, Chaffee AL (2007) Mechanical/thermal dewatering of lignite. Part 3: Physical properties and pore structure of MTE product coals. Fuel 86:3–16

    CAS  Google Scholar 

  123. Bergins C (2003) Kinetics and mechanism during mechanical/thermal dewatering of lignite. Fuel 82:355–364

    CAS  Google Scholar 

  124. Korger V, Stahl W (1993) Vapour pressure dewatering-a new technique for combined mechanical and thermal dewatering of filter cakes. In: Proceedings of the 6th world filtration congress, Nagoya, pp 400–404

    Google Scholar 

  125. Korger V (1995) Dampfdruckentwässerung-Ein neues kombiniertes Entfeuchtungsverfahren, Fortschritt.-Ber. VDI Reihe 3, Nr. 403 Düsseldorf: VDI Verlag, Germany

    Google Scholar 

  126. Ruf J, Stahl W (1997) The hot filter press-the new technology of vapour pressure dewatering. In: Baumann R, Weisert L (eds) Advances in filtration and separation technology, vol 11. Advancing Filtration Solution, Minneapolis

    Google Scholar 

  127. Ruf J, Korger V, Stahl W (1997) Vapour pressure dewatering in a hot filter press. Aufbereit-Tech 38:411–416

    CAS  Google Scholar 

  128. Ruf J (1998) Die technische Umsetzung der Dampfdruckentwässerung in einer Heißen Filterpresse. PhD dissertation thesis, Institut für Mechanische Verfahrenstechnik und Mechanik, Karlsruhe, Germany

    Google Scholar 

  129. Couturier S, Valat M, Vaxelaire J, Puiggali JR (2004) Mechanical dewatering of residual sludge enhanced by a local thermal supply. In: Proceedings of the world filtration congress 9, New Orleans, Louisiana, USA

    Google Scholar 

  130. Couturier S, Valat M, Vaxelaire J, Peuchot C (2005) Thermal supply at the filter medium level: a solution to enhanced expression process. In: Proceedings of the 18th annual conference of AFS, Atlanta, Georgia, USA

    Google Scholar 

  131. Gerl S, Stahl W (1996) Improved dewatering of coal by steam pressure filtration. Coal Prep 17:137–146

    CAS  Google Scholar 

  132. Peuker UA, Stahl W (1999) Scale-up of steam pressure filtration. Chem Eng Process 38:611–619

    CAS  Google Scholar 

  133. Peuker UA, Stahl W (2002) Mechanical-thermal dewatering applying steam centrifugation. Chem Eng Technol 25:368–373

    CAS  Google Scholar 

  134. Peeters B (2010) Mechanical dewatering and thermal drying of sludge in a single apparatus. Dry Technol 28:454–459

    CAS  Google Scholar 

  135. Bongert W (1976) US Pat 3970552

    Google Scholar 

  136. Furedi P (1977) US Pat 4055491

    Google Scholar 

  137. Muralidhara HS, Ensminger D (1984) Acoustic dewatering and drying: state of the art review. In: Proceedings of the IV international dry technol symposium, Kyoto, Japan

    Google Scholar 

  138. Muralidhara HS, Ensminger D, Putnam A (1985) Acoustic dewatering and drying (low and high frequency): state of the art review. Dry Technol 3:529–566

    Google Scholar 

  139. Muralidhara HS, Parekh B, Senapati N (1985b) Solid liquid separation process for fine particle suspensions by an electric and ultrasonic field. US Pat 4561953

    Google Scholar 

  140. Bekker MC, Meyer JP, Pretorius L, Van Der Merwe DF (1997) Separation of solid-liquid suspensions with ultrasonic acoustic energy. Water Res 31:2543–2549

    CAS  Google Scholar 

  141. Muralidhara HS, Bread RB, Senapati N (1987) Mechanisms of ultrasonic agglomeration for dewatering colloid suspension. Filtr Sep 24:409–413

    CAS  Google Scholar 

  142. Wang F, Ji M, Lu S (2006) Influence of ultrasonic disintegration on the dewaterability of waste activated sludge. Environ Prog 25:257–260

    Google Scholar 

  143. Tuori T (1998) Enhancing filtration by electro-acoustic methods. PhD dissertation thesis, Lougborough University, UK

    Google Scholar 

  144. Gallego-Juárez JA, Elvira-Segura L, Rodríguez-Corral G (2003) A power ultrasonic technology for deliquoring. Ultrasonics 41:255–259

    Google Scholar 

  145. Swamy KM, Rao ARK, Narasimhan KS (1983) Acoustics aids dewatering. Ultrasonics 21:280–281

    CAS  Google Scholar 

  146. Svoboda J (1982) The influence of surface forces on magnetic separation. IEEE Trans Magn 18:862–865

    Google Scholar 

  147. Tsouris C, Scott TC (1995) Flocculation of paramagnetic particles in a magnetic field. J Colloid Interface Sci 171:319–330

    CAS  Google Scholar 

  148. Charles S (1988) Aggregation in magnetic fluids and magnetic fluid composites. Chem Eng Commun 67:145–180

    CAS  Google Scholar 

  149. Chaplin M (2011) Magnetic and electric effects on water. http://www.lsbu.ac.uk/water/magnetic.html. Accessed 25 Jan 2011

  150. Tarleton ES, Wakeman RJ (2007) Solid/liquid separation: equipment selection and process design. Butterworth-Heinemann, Oxford

    Google Scholar 

  151. Watson JL, Gardner PL (1995) Multi-force dewatering for magnetic waste materials. Miner Eng 8:191–200

    CAS  Google Scholar 

  152. Fuchs B, Hoffman C, Keller K, Rey CM (2006a) PCT/US Pat 2005 005043

    Google Scholar 

  153. Fuchs B, Stolkarski M, Stahl W, Nirschi H (2006) Magnetic field enhanced cake filtration. Filtration 6:333–339

    CAS  Google Scholar 

  154. Jacob J, Chia LHL, Boey FYC (1995) Thermal and non-thermal interaction of microwave radiation with materials. J Mater Sci 30:5321–5327

    CAS  Google Scholar 

  155. Toreci I, Kennedy KJ, Droste RL (2009) Evaluation of continuous mesophilic anaerobic sludge digestion after high temperature microwave pretreatment. Water Res 43:1273–1284

    CAS  Google Scholar 

  156. Ponne CT, Bartels PV (1995) Interaction of electromagnetic energy with biological material relation to food processing. Radiat Phys Chem 45:591–607

    CAS  Google Scholar 

  157. Thostenson ET, Chou T-W (1999) Microwave processing: fundamentals and applications. Compos Part A Appl Sci Manuf 30:1055–1071

    Google Scholar 

  158. Kaatze U (1995) Fundamentals of microwaves. Radiat Phys Chem 45:539–548

    CAS  Google Scholar 

  159. Kaatze U (1995) Microwave dielectric properties of liquids. Radiat Phys Chem 45:549–566

    CAS  Google Scholar 

  160. Fung DYC, Cunningham FE (1980) Effect of microwaves on microorganisms in foods. J Food Prot 43:641–650

    Google Scholar 

  161. NiederwÖhrmeier B, BÖhm R, Strauch D (1985) Microwave treatment as an alternative pasteurization process for the disinfection of sewage sludge: experiences with the treatment of liquid manure. In: Havelaar AH, L’Hermite P, Strauch D (eds) Inactivation of microorganisms in sewage sludge by stabilization processes. Elsevier Applied Science, London

    Google Scholar 

  162. Woo I-S, Rhee I-K, Park H-D (2000) Differential damage in bacterial cells by microwave radiation on the basis of cell wall structure. Appl Environ Microbiol 66:2243–2247

    CAS  Google Scholar 

  163. Hong SM, Park JK, Lee YO (2004) Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Res 38:1615–1625

    CAS  Google Scholar 

  164. Fu D, Cai M, Chao Allen C, Liu J (1999) Initial studies on sludge drying using microwave heating. In: Proceedings of the international conference on solid waste technology management. Widener University School Engineering, Chester, PA, USA

    Google Scholar 

  165. Barton WA, Miller SA, Veal CJ (1999) The electrodewatering of sewage sludges. Dry Technol 17:497–522

    CAS  Google Scholar 

  166. Yoshida H (1993) Practical aspects of dewatering enhanced by electro-osmosis. Dry Technol 11:787–814

    CAS  Google Scholar 

  167. Moulik SP (1971) Physical aspects of electrofiltration. Environ Sci Technol 5:771–776

    CAS  Google Scholar 

  168. Yukawa H, Kobayashi K, Tsukui Y, Yamano S, Iwata M (1976) Analysis of batch electrokinetic filtration. J Chem Eng Jpn 9:396–401

    CAS  Google Scholar 

  169. Yoshida H, Shinkawa T, Yukawa H (1985) Water content and electric potential distributions in gelatinous bentonite sludge with electroosmotic dewatering. J Chem Eng Jpn 18:337–342

    CAS  Google Scholar 

  170. Krishnaswamy P, Bahnii JR (1986) Electrically coupled flow through fine particle cakes. Filtr Sep 23:289–293

    CAS  Google Scholar 

  171. Muralidhara HS, Senapati N, Beard RB (1986) A novel electroacoustic separation process for fine particle suspensions. In: Muralidhara HS (ed) Advances in solid-liquid separation. Battelle, Columbus

    Google Scholar 

  172. Gopalakrishnan S, Mujumdar AS, Weber ME (1996) Optimal off-time in interrupted electroosmotic dewatering. Sep Technol 6:197–200

    CAS  Google Scholar 

  173. Xian-shu D, Xiao-jie H, Su-ling Y, Wei-peng R, Zhi-zhong W (2009) Vacuum filter and direct current electro-osmosis dewatering of fine coal slurry. In: Proceedings of the 6th international conference on mining science and technology, Procedia Earth Planet Sci vol 1, pp 685–693

    Google Scholar 

  174. Heath LW, Dmirel T (1984) Pressurized electro-osmotic dewatering. Eng found conf flocculation sediment consol. Sea Island, Georgia

    Google Scholar 

  175. Kondoh S, Hiraoka M (1990) Commercialization of pressurized electroosmotic dehydrator (PED). Water Sci Technol 22:259–268

    CAS  Google Scholar 

  176. Kondoh S, Hiraoka M (1993) Studies on the improving dewatering method of sewage sludge by the pressurized electro-osmotic dehydrator with injection of polyaluminum chloride. In: Proceedings of the 6th world filtration congress, Nagoya

    Google Scholar 

  177. Buijs PJ, Van Diemen AJG, Stein HN (1994) Efficient dewatering of waterworks sludge by electroosmosis. Colloids Surf A Physiochem Eng Asp 85:29–36

    CAS  Google Scholar 

  178. Gazbar S, Abadie JM, Colin F (1994) Combined action of electro-osmotic drainage and mechanical compression on sludge dewatering. Water Sci Technol 30:169–175

    CAS  Google Scholar 

  179. Chen H, Mujumdar AS, Raghavan GSV (1996) Laboratory experiments on electroosmotic dewatering of vegetable sludge and mine tailings. Dry Technol 14:435–445

    Google Scholar 

  180. Larue O, Mouroko-Mitoulou T, Vorobiev E (2001) Pressurized electroosmotic dewatering in filter cycle. Dry Technol 19:2363–2377

    CAS  Google Scholar 

  181. Lee JK, Shin HS, Park CJ, Lee CG, Lee JE, Kim YW (2002) Performance evaluation of electro-dewatering system for sewage sludges. Korean J Chem Eng 19:41–45

    CAS  Google Scholar 

  182. Raats MHM, Van Diemen AJG, Laven J, Stein HN (2002) Full scale electrokinetic dewatering of waste sludge. Colloids Surf A Physicochem Eng Asp 210:231–241

    CAS  Google Scholar 

  183. Tuan PA, Jurate V, Mika S (2008) Electro-dewatering of sludge under pressure and non-pressure conditions. Environ Technol 29:1075–1084

    CAS  Google Scholar 

  184. Kobayashi K, Hakoda M, Hosoda Y, Iwata M, Yukawa H (1979) Electroosmotic flow through particle beds and electroosmotic pressure distribution. J Chem Eng Jpn 12:492–494

    CAS  Google Scholar 

  185. Yoshida H, Iwata M, Igami H, Murase T (1991) Combined operation of electroosmotic dewatering and mechanical expression. J Chem Eng Jpn 24:399–401

    Google Scholar 

  186. Iwata M, Igami H, Murase T (1991) Analysis of electroosmotic dewatering. J Chem Eng Jpn 24:45–50

    CAS  Google Scholar 

  187. Iwata M, Igami H, Murase T, Yoshida H (1991) Combined operation of electroosmotic dewatering and mechanical expression. J Chem Eng Jpn 24:399–401

    CAS  Google Scholar 

  188. Raghavan GSV, Lightfoot DG (1993) Combined field dewatering of seaweed. In: Proceedings of the American Society of Agricultural Engineers, Paper no° 936030. Summer Meeting, Spokane, WA

    Google Scholar 

  189. Lightfoot DG, Raghavan GSV (1994) Combined fields dewatering of seaweed (Nereocystis luetkeana). Trans Am Soc Agric Eng 37:899–906

    Google Scholar 

  190. Orsat V, Raghavan GSV, Norris ER (1996) Food processing waste dewatering by electro-osmosis. Can Agric Eng 38:63–67

    Google Scholar 

  191. Saveyn H, Pauwels G, Timmerman R, Meeren PV (2005) Effect of polyelectrolyte conditioning on the enhanced dewatering of activated sludge by application of an electric field during the expression phase. Water Res 39:3012–3020

    CAS  Google Scholar 

  192. Saveyn H, Meeren PV, Pauwels G, Timmerman R (2006) Bench-and pilot-scale sludge electrodewatering in a diaphragm filter press. Water Sci Technol 54:53–60

    CAS  Google Scholar 

  193. Mahmoud A, Olivier J, Vaxelaire J, Hoadley AFA (2011) Electro-dewatering of wastewater sludge: influence of the operating conditions and their interaction effects. Water Res 45(9):2795–2810

    CAS  Google Scholar 

  194. Rabie HR, Mujumdar AS, Weber ME (1994) Electroosmotic dewatering of bentonite in thin beds. Sep Technol 4:180–182

    CAS  Google Scholar 

  195. Vijh AK (1999) The Significance of current observed during combined field and pressure electroosmotic dewatering of clays. Dry Technol 17:555–563

    Google Scholar 

  196. Vijh AK (1999) Electroosmotic dewatering (EOD) of clays and suspensions: components of voltage in an electroosmotic cell. Dry Technol 17:565–574

    Google Scholar 

  197. Weber K (2002) Untersuchungen zum Einfluss eines elektrischen Feldes auf die kuchenbildende Pressfiltration, VDI Verlag GmbH

    Google Scholar 

  198. Larue O, Vorobiev E (2004) Sedimentation and water electrolysis effects in electrofiltration of kaolin suspension. AIChE J 50:3120–3133

    CAS  Google Scholar 

  199. Smollen M, Kafaar A (1994) Electroosmotically enhanced sludge dewatering: pilot-plant study. Water Sci Technol 30:159–168

    CAS  Google Scholar 

  200. Snyman HG, Forssman P, Kafaar A, Smollen M (2000) The feasibility of electro-osmotic belt filter dewatering technology at pilot scale. Water Sci Technol 41:137–144

    CAS  Google Scholar 

  201. Hwang S, Min KS (2003) Improved sludge dewatering by addition of electro-osmosis to belt filter press. J Environ Eng Sci 2:149–153

    CAS  Google Scholar 

  202. Miller SA, Murphy A, Veal CJ, Young M (1998) Improved filtration of sewage sludges using electrodewatering. End of Project Report, CSIRO Investigation Report N° ET/IR140

    Google Scholar 

  203. Lockhart NC (1983) Electroosmotic dewatering of clays. I. Influence of voltage. Colloids Surf 6:229–238

    CAS  Google Scholar 

  204. Lockhart NC (1983) Electroosmotic dewatering of clays. II. Influence of salt, acid, and flocculants. Colloids Surf 6:239–251

    CAS  Google Scholar 

  205. Lockhart NC (1983) Electro-osmotic dewatering of fine tailings from mineral processing. Int J Miner Process 10:131–140

    CAS  Google Scholar 

  206. Rabie HR, Mujumdar AS, Weber ME (1994) Interrupted electro osmotic dewatering of clay suspensions. Sep Technol 4:38–46

    CAS  Google Scholar 

  207. Yoshida H, Kitajyo K, Nakayama M (1999) Electro osmotic dewatering under A.C. electric field with periodic reversals of electrode polarity. Dry Technol 17:539–554

    CAS  Google Scholar 

  208. Yoshida H (2000) Electro-osmotic dewatering under intermittent power application by rectification of AC electric field. J Chem Eng Jpn 33:134–140

    CAS  Google Scholar 

  209. Saveyn H, Meeren PV, Hofmann R, Stahl W (2005) Modelling two-sided electrofiltration of quartz suspensions: importance of electrochemical reactions. Chem Eng Sci 60:6768–6779

    CAS  Google Scholar 

  210. Kondo S, Sano S (1994) Method of electroosmotically dehydrating sludge. US Pat 5279718

    Google Scholar 

  211. Lightfoot DG, Raghavan GSV (1995) Combined fields dewatering of seaweed with a roller press. Appl Eng Agric 11:291–295

    Google Scholar 

  212. Friehmelt V, Gidarakos E (1996) Electrokinetic dewatering of effluent sludge as a continuous process. Aufbereit-Tech/Miner Proc 37:133–141

    CAS  Google Scholar 

  213. Watanabe S, Yamada Y, Hobo Y, Hayashi N, Sumi T, Dykes D, Touchard G (2001) A new method of analysing electro-osmosis using FET models. J Electrost 51–52:455–462

    Google Scholar 

  214. Vijh A (2002) Electroosmotic dewatering by a new method using a gate electrode: field effect transistor (EFT) model or simply a multistage dewatering. Dry Technol 20:705–710

    Google Scholar 

  215. Weber K, Stahl W (2003) Influence of an electric field on filtration in a filter press. Chem Eng Technol 26:44–48

    CAS  Google Scholar 

  216. Ho MY, Chen G (2001) Enhanced electro-osmotic dewatering of fine particle suspension using a rotating anode. Ind Eng Chem Res 40:1859–1863

    CAS  Google Scholar 

  217. Zhou J, Liu Z, She P, Ding F (2001) Water removal from sludge in a horizontal electric field. Dry Technol 19:627–638

    CAS  Google Scholar 

  218. Yoshida H, Okada M (2006) Influence of electric field application with decreasing one sided area of electrodes on electro-osmotic dewatering. Dry Technol 24:1313–1316

    CAS  Google Scholar 

  219. De-Gang M, Shu-Ting Z (2007) The electro-dewatering of sludge using adsorptive material. In: Proceedings of the 5th Asia-Pacific dry conference, Guohua Chen, Hong Kong, China

    Google Scholar 

  220. Yu X, Zhang S, Xu H, Zheng L, Lü X, Ma D (2010) Influence of filter cloth on the cathode on the electroosmotic dewatering of activated sludge. Chin J Chem Eng 18:562–568

    CAS  Google Scholar 

  221. Lai CKB (2001) Salinity effect on biological sludge dewatering. PhD dissertation thesis, University of Science and Technology, Hong Kong

    Google Scholar 

  222. Chu CP, Lee DJ, Liu Z, Jin WH (2004) Morphology of sludge cake at electroosmosis dewatering. Sep Sci Technol 39:1331–1346

    CAS  Google Scholar 

  223. Esmaeily A, Elektorowicz M et al (2006) Dewatering and coliform inactivation in biosolid using electrokinetic phenomena. J Environ Eng Sci 5:197–202

    CAS  Google Scholar 

  224. Banerjee S, Law SE (1997) Elecroosmotically enhanced drying of biomass. IEEE Ind Appl Soc 3:1859–1866

    Google Scholar 

  225. Laursen S, Jensen JB (1993) Electroosmosis in filter cakes of activated-sludge. Water Res 27:777–783

    CAS  Google Scholar 

  226. Gazbar S (1993) Evaluation et amélioration des performances des procèdes de déshydratation mécanique des boues résiduaires. PhD dissertation thesis, Nancy, France

    Google Scholar 

  227. Weng CH, Yuan C (2002) Enhancement of sludge dewatering: application of electrokinetic technique. J Chin Inst Environ Eng 12:235–243

    CAS  Google Scholar 

  228. Yuan C, Weng CH (2003) Sludge dewatering by electrokinetic technique: effect of processing time and potential gradient. Adv Environ Res 7:727–732

    CAS  Google Scholar 

  229. Olivier J, Vaxelaire J, Ginisty P (2004) Gravity drainage of activated sludge: from laboratory experiments to industrial process. J Chem Technol Biotechnol 79:461–467

    CAS  Google Scholar 

  230. Gingerich I, Neufeld RD, Thomas TA (1999) Electroosmotically enhanced sludge pressure filtration. Water Environ Res 71:267–276

    CAS  Google Scholar 

  231. Condie D, Szemes F, Veal C (1996) Electrodewatering of wastewater treatment plant sludges. In: Proceedings of the 7th world filtration congress, Budapest

    Google Scholar 

  232. Perry RH, Green DW (1997) Perry’s chemical engineers‘ handbook. McGraw-Hill, New York

    Google Scholar 

  233. Mujumdar AS (2007) Handbook of industrial drying. CRC Press, Boca Raton

    Google Scholar 

  234. Friehmelt V, Gidarakos E, Laser U (1995) Dewatering of sludges using electrokinetic effects. Aufbereit-Tech 36:267–276

    CAS  Google Scholar 

  235. Citeau M, Larue O, Vorobiev E (2011) Influence of salt, pH and polyelectrolyte on the pressure electro-dewatering of sewage sludge. Water Res 45:2167–2180

    CAS  Google Scholar 

  236. Laursen S (1993) Electrokinetics in clays and filter cakes of activated-sludge. Water Sci Technol 28:181–188

    CAS  Google Scholar 

  237. Mikkelsen LH (2003) Applications and limitations of the colloid titration method for measuring activated sludge surface charges. Water Res 37:2458–2466

    CAS  Google Scholar 

  238. Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27:2638–2647

    CAS  Google Scholar 

  239. Acar YB, Hamed JT, Alshawabkeh AN, Gale RJ (1994) Removal of cadmium (II) from saturated kaolinite by the application of electrical current. Geotechnique 44:239–254

    Google Scholar 

  240. Acar YB, Zappi M (1995) Infrastructural needs in waste containment and environmental restoration. J Infrastruct Syst-ASCE 1:82–91

    Google Scholar 

  241. Yang GCC, Lin SL (1998) Removal of lead from a silt loam soil by electrokinetic remediation. J Hazard Mater 58:285–299

    CAS  Google Scholar 

  242. Altin A, Degirmenci M (2005) Lead (II) removal from natural soils by enhanced electrokinetic remediation. Sci Total Environ 337:1–10

    CAS  Google Scholar 

  243. Mahmoud A, Muhr L, Vasiluk S, Aleynikoff A, Lapicque F (2003) Investigation of transport phenomena in a hybrid ion exchange-electrodialysis system for the removal of copper ions. J Appl Electrochem 33:875–884

    CAS  Google Scholar 

  244. Mahmoud A, Muhr L, Grévillot G, Lapicque F (2007) Experimental tests and modelling of an electrodeionization cell for the treatment of dilute copper solutions. Can J Chem Eng 85:171–179

    CAS  Google Scholar 

  245. Monzie I, Muhr L, Lapicque F, Grévillot G (2005) Mass transfer investigations in electrodeionization processes using the microcolumn technique. Chem Eng Sci 60:1389–1399

    CAS  Google Scholar 

  246. Tuan PA, Sillanpää M (2010) Fractionation of macro and trace metals due to off-time interrupted electrodewatering. Dry Technol 28:762–772

    Google Scholar 

  247. Yang L, Nakhla G, Bassi A (2005) Electro-kinetic dewatering of oily sludges. J Hazard Mater 25:130–140

    Google Scholar 

  248. Huang J, Elektorowics M, Oleszkiewics JA (2008) Dewatering and disinfection of aerobic and anaerobic sludge using an electrokinetic (EK) system. Water Sci Technol 57:231–236

    CAS  Google Scholar 

  249. Saveyn H, Curvers D, Pel L et al (2006) In situ determination of solidosity profiles during activated sludge electrodewatering. Water Sci Technol 40:2135–2142

    CAS  Google Scholar 

  250. Miller SA, Sacchetta C, Veal C (1997) Electrodewatering of waste activated sewage sludge. In: Proceedings of the 17th AWWA federal convention, Melbourne

    Google Scholar 

  251. Yamaguchi M, Ari T, Matsushita H (1986) Dewatering of water and wastewater sludges with an electro-osmotic dewatering system. Water Waste 28:36–41

    Google Scholar 

  252. Yukawa H, Yoshida H (1986) Recent development of electroosmotic dewatering. In: Mujumdar AS (ed) Drying of solids recent international developments. Willey Eastern, New Delhi

    Google Scholar 

  253. Kondoh S, Suwa T, Sano S, Muroi O (1991) Compressive and electro-osmotic dehydrator. US Pat 5034111

    Google Scholar 

  254. ELODE Electro-Osmosis Dehydrator: www.elode.com.sg

  255. Muralidhara HS, Chauhan SP (1988) Electro-acoustic dewatering (EAD) a novel approach for food processing and recovery. Sep Sci Technol 23:2143–2158

    Google Scholar 

  256. Muralidhara HS, Hampel H, Kroening H (1988) Dewatering of Hamburg’s dredged material by electroacoustic dewatering. Dry Technol 6:535–546

    Google Scholar 

  257. Muralidhara HS, Parekh BK, Senapati N (1988b) Solid-liquid separation process for fine particle suspensions by an electric and ultrasonic field. US Pat 4747920

    Google Scholar 

  258. Ensminger D (1988) Acoustic and electroacoustic methods of dewatering and drying. Dry Technol 6:473–499

    Google Scholar 

  259. Ensminger D (1989) Electroacoustic dewatering of sludge. In: Proceedings of the american filtration society’s annual technical conference on filtration and separation. Pittsburgh, PA

    Google Scholar 

  260. Chauhan SP, Kim BC et al (1989) Scale-up of electroacoustic dewatering (EAD) process for food products. In: Proceedings of the summer national AIChE meeting, Philadelphia, Pennsylvania

    Google Scholar 

  261. Heikkinen J, Tuori T, Wakeman RJ et al (2000) Development of deliquoring method enhanced by electric and acoustic fields. In: Proceedings of the 8th world filtration congress, Brighton

    Google Scholar 

  262. Abu-Orf M, Muller CD, Park C, Novak JT (2004) Innovative technologies to reduce water content of dewatered municipal residuals. J Residuals Sci Technol 1:83–91

    CAS  Google Scholar 

  263. Chauhan SP, Johnson HW (1990) Scale-up of electroacoustic dewatering of sewage sludges. In: Muralidhara HS (ed) Solid/liquid separation: waste management and productivity enhancement. Battelle, Columbus

    Google Scholar 

  264. Scholes ON (2005) Mechanical thermal expression of lignite: directional dewatering and permeability characteristics. PhD dissertation. Monash University, Clayton, Australia

    Google Scholar 

  265. EMICO Water Technologies-Electro-dewatering: www.ewt-cinetik.com

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akrama Mahmoud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Mahmoud, A., Olivier, J., Vaxelaire, J., Hoadley, A.F.A. (2013). Advances in Mechanical Dewatering of Wastewater Sludge Treatment. In: Sharma, S., Sanghi, R. (eds) Wastewater Reuse and Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4942-9_9

Download citation

Publish with us

Policies and ethics